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Abstract

In a recent paper Lakemeyer and Levesque proposed a first-
order logic of limited belief to characterize the beliefs of a
knowledge base (KB). Among other things, they show that
their model of belief is expressive, eventually complete, and
tractable. This means, roughly, that a KB may consist of ar-
bitrary first-order sentences, that any sentence which is logi-
cally entailed by the KB is eventually believed, given enough
reasoning effort, and that reasoning is tractable under rea-
sonable assumptions. One downside of the proposal is that
epistemic states are defined in terms of sets of clauses, pos-
sibly containing variables, giving the logic a distinct syntac-
tic flavour compared to the more traditional possible-world
semantics found in the literature on epistemic logic. In this
paper we show that the same properties as above can be ob-
tained by defining epistemic states as sets of three-valued pos-
sible worlds. This way we are able to shed new light on those
properties by recasting them using the more familiar notion
of truth over possible worlds.

1 Introduction
Ever since the idea of a knowledge-based system was first
introduced by McCarthy (1963), it has been a challenge to
come up with a model of belief that characterizes the con-
clusions such systems should be able to draw from a given
knowledge base (KB). Perhaps the main issue has been
to combine a high degree of expressiveness with a notion
of tractable reasoning. In a recent paper Lakemeyer and
Levesque (Lakemeyer and Levesque 2019) (LL) proposed
a model of belief, which is perhaps the most successful to
date in addressing these and other concerns. They achieve
expressiveness in the sense that knowledge bases may con-
tain arbitrary sentences in first-order logic. Tractability is
achieved by considering a notion of mental effort, character-
ized by a single parameter k = 0, 1, . . . and corresponding
belief operators Bk. The idea is that B0 captures obvious
beliefs, which include all the sentences in the KB and some
easy logical consequences. When k increases, Bk would
include more and more logical consequences of the KB, re-
quiring more and more effort to be computed. Nevertheless,
LL show that, for any fixed k and under some reasonable as-
sumptions, the reasoning task remains tractable. Moreover,
LL show that any logical consequence of the KB is believed
at some level k.

In their work LL also consider a notion of only-believing
using a modal operator O, where Oφ is intended to mean
that all that is believed at level 0 is φ. They then characterize
the beliefs at any level k in terms of the valid sentences in
the logic of the form OKB ⊃ Bkφ. The main contributions
of LL can be summarized as follows:

• expressiveness: for any sentence φ, Oφ is satisfiable, and
moreover |= (Oφ ⊃ B0φ);

• cumulativity: for any k and any φ
|= (Bkφ ⊃ Bk+1φ).;

• soundness: for any k, any KB and φ,
if |= (OKB ⊃ Bkφ), then |= (KB ⊃ φ);

• eventual completeness: for any KB and any φ,
if |= (KB ⊃ φ), then for some k |= (OKB ⊃ Bkφ);

• tractability: for any k, KB, and α, the question as to
whether |= (OKB ⊃ Bkα) is decidable (and has poly-
nomial data complexity in cases of interest).

While these are all very desirable properties, which no
other model of limited belief exhibits (see the related-work
section for more details), a downside of LL’s logic is that
it has a distinct syntactic flavour. In particular, an epistemic
state is defined as a (finite) set of clausesC, which may men-
tion free variables. Moreover, believing an arbitrary sen-
tence at level k is defined, roughly, by reducing it to believ-
ing clauses, which in turn are obtained by k resolution steps
from C. While there is nothing wrong with this technically,
we find this approach not very compelling from a seman-
tic point of view. Beginning with Hintikka’s seminal work
on modelling belief using Kripke structures (Kripke 1959;
Hintikka 1962), the best understood models of belief have
been those based on possible worlds. In the simplest case,
when an epistemic state consists of a set of possible worlds,
belief is defined in terms of truth in all those worlds.

In this paper, we will show that a close variant of LL’s
logic, satisfying all the desired properties mentioned above,
can be obtained using sets of worlds as epistemic states. As
we will see, many properties of belief such as belief equiv-
alences will come out as semantic properties of worlds and
not, as in the case of LL, as a result of normal-form trans-
formations of sentences. The worlds themselves will have
to be non-standard, as it is well known that classical (two-
valued) worlds lead to so-called logical omniscience (Hin-
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tikka 1975), and hence undecidable reasoning in the first-
order case. The main contribution of the paper is not a new
logic, since we are mainly concerned with reestablishing the
properties of LL’s logic under a new semantics. Instead, by
defining belief in terms of truth over possible worlds, which
has a long tradition in epistemic logic, the main contribution
is an alternative view of the valid sentences of the existing
logic.

The rest of the paper is organized as follows. In the next
section, we will go over our approach, mainly informally.
This is followed by a brief review of the logic L, a variant
of first-order logic (Levesque and Lakemeyer 2001), which
forms the basis of both LL’s and our proposal. We then turn
to the new logic in detail and prove that it satisfies the high-
level properties listed above: expressiveness, cumulativity,
tractability, soundness and eventual completeness, as well
as certain desirable belief equivalences. The paper ends with
related work and conclusions.

2 The Approach
In order to motivate our approach to modelling belief, it
is instructive to consider how intractability comes about in
classical logical reasoning. More precisely, if we think of
how intractability arises in trying to determine whether or
not KB logically entails φ, there are really two sources:

1. It can be too hard to make full use of the information pro-
vided by the KB.

2. It can be too hard to see if φ should be believed because
of its own properties.

For the first item, consider, for example, a KB consisting
of a set of ground clauses and where φ is some ground atom
p. Determining whether KB |= φ in this case is the same
as determining if KB ∪ {¬p} is unsatisfiable. This task is
co-NP-complete and the best known algorithms would per-
haps use SAT-solvers to tackle this particular problem. In
the first-order case one may need to resort to other methods
like Resolution, but then the problem is already undecidable.

For the second item, consider the case where the KB is
empty. Determining whether KB |= φ in this case is the
same as determining if φ is logically valid. In the proposi-
tional case, this is not too hard when φ is small (relative to
the size of the KB): we can convert φ to CNF and ensure that
each resulting clause is a tautology. But for the full language
with quantifiers, the task is undecidable in general.

To deal with these two items, we will be proposing a new
model of belief with two separate mechanisms to keep the
reasoning tractable. For the first item above, we will intro-
duce epistemic states as sets of what we will call “extended”
worlds; for the second item, we will preprocess the KB and
the query φ using Skolemization and term substitution. The
exact details will be presented beginning in the next section,
but here is an informal outline of those ideas. The novelty of
this paper compared to LL lies in the use of sets of extended
worlds instead of sets of clauses. For the second item, we
essentially follow what LL have done.

If we think of an epistemic state of a KB as the set of all
worlds satisfying KB, it is easy to see that we need to go be-

yond classical two-valued worlds in order to obtain tractabil-
ity. The problem, in essence, is that such epistemic states are
too coarse in that they lump all logically equivalent knowl-
edge bases together. For example, for KB = {p, (p ⊃ q)},
we might want an epistemic state where B0(q) is false, but
for the logically equivalent KB = {p, (p ⊃ q), q}, we want
a different epistemic state where B0(q) is true.

Here we will be using a finer-grained notion of epistemic
state based on sets of extended worlds. An extended world
will be defined as one where atomic sentences are mapped
to one of three values, {0, 1, *}. A world that assigns p to
* supports both the truth and the falsity of p. Such a world
will then be able to support the truth of both p and of (p ⊃ q)
without also supporting the truth of q. So the epistemic state
e1 made up of all extended worlds where p and (p ⊃ q) are
supported is a superset of an e2 where q is also supported.
In this way, in e1 we can end up believing p and (p ⊃ q)
without believing q, whereas in e2 we will end up believing
these and q as well.

In going from belief at level k to belief at level k + 1,
we will end up moving from an epistemic state e to another
one, S(e), that has fewer extended worlds where we end
up believing more sentences. As we will see, the idea is
to eliminate some of the worlds where an atom is assigned
*. In the case of e1 above, we will end up eliminating the
worlds where p is assigned *, which means that S(e1) will
be e2. More generally, if the epistemic state is the set of all
extended worlds that support {(p ∨ q), (¬p ∨ r), (¬q ∨ r)},
then the clauses (p∨ q) and (s∨¬s) and their supersets will
be believed at level 0, the clause (q∨r) and its supersets will
believed at level 1 (after one application of S), and finally,
the clause r and its supersets will be believed at level 2 (after
two applications of S).

This idea of epistemic states as sets of extended worlds
works fine for the quantifier-free part of the language, but it
cannot be the whole story. To see why, note that logically
valid sentences are supported by every extended world. This
means that even in the least informed epistemic state, the
one made up of all extended worlds, we would be required
to believe all valid sentences of first-order logic at level 0
(making belief at level 0 undecidable in the first-order case).

To avoid this, the first-order part of the semantics of be-
lief goes further. As we will see in the next section, the
semantics of O uses Skolemization to eliminate existential
variables, and the semantics of Bk uses the dual of Skolem-
ization (also called Herbrandization) to eliminate universal
variables, and then a bounded form of term substitution to
produce a sentence with no quantifiers. We therefore use the
following reductions:

1. Oφ will hold iff O∀~x.ψ holds, where the formula ψ is a
Skolemized version of φ with no quantifiers;

2. Bkφ will hold iff there are terms ~t0, . . . , ~tk such that
Bk(ψ~x

~t0
∨ · · ·∨ψ~x

~tk
) holds, where the formula ψ is a dual-

Skolemized version of φ with no quantifiers;

The second item here is a bounded application of what is
known as Herbrand’s Theorem, a way of going from unsat-
isfiability in classical first-order logic (what we will hence-
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forth call fo-unsatisfiability) to its propositional counterpart.
The theorem is as follows:

Theorem 1 [Herbrand] Let Φ be a set of formulas with no
quantifiers. If the set Φ is fo-unsatisfiable (with the free vari-
ables interpreted universally) then so is some finite subset of
{φ~x~t | φ ∈ Φ and ~t is ground }.
As a special case (mirroring item 2 above), we have the fol-
lowing:

Corollary 1 If φ is fo-valid, then for some n, there are
ground terms ~t1, . . . , ~tn such that (ψ~x

~t1
∨ · · · ∨ ψ~x

~tn
) is fo-

valid, where ψ is a dual-Skolemized version of φ.

To see how these reductions avoid the problem of having
to believe all classically valid sentences, consider for exam-
ple ∃x∀y(P (y) ∨ ¬P (x)). This sentence is valid in first-
order logic and so is supported by all extended worlds, as is
∃x.ψ, where ψ is its dual-Skolemized version, (P (f(x)) ∨
¬P (x)). However, there is no single term t such that ψx

t is
supported by all extended worlds. Because of this, B0∃x.ψ
need not be true, according to the reduction above. (How-
ever, B1∃x.ψ will be true in this case since there are two
terms t and u such that (ψx

t ∨ ψx
u) is supported by all ex-

tended worlds, namely t = a and u = f(a). Other fo-valid
sentences will require higher levels of belief.)

But having made this move to term substitution in beliefs,
we need to do something related in the KB using Skolem-
ization. Consider the sentence ∃x.P (x). This will be be-
lieved in an epistemic state e at level 0 only if there is a t
such that P (t) is supported by all the extended worlds in e.
This means that it is not sufficient that the extended worlds
in e support an existential; they must all agree on some
term t. So an epistemic state where say O∃x[P (x) ∧Q(x)]
is true should be the set of extended worlds that support
the Skolemized version of this KB, that is, something like
[P (a) ∧Q(a)], for some Skolem constant a. In general, the
Skolemization of the KB is needed to guarantee the exis-
tence of the terms now required for believing existentials.

These are the main ideas behind our logic.

2.1 The Logic L
Here we briefly go over the logic L, a variant of first-order
logic considered in (Levesque and Lakemeyer 2001; Lake-
meyer and Levesque 2019).1 The language of L is a first-
order dialect with = and an infinite supply of function and
predicate symbols of every arity. In addition, the language
also features a set N of standard names #1,#2,#3, . . . ,
which are syntactically treated like constants but which are
intended to be isomorphic to the (fixed) domain of discourse.
In other words, standard names can be thought of as con-
stants that satisfy the unique name assumption and an infini-
tary version of domain closure. Among other things, stan-
dard names allow for a very simple, substitutional account of
quantifiers. See (Levesque and Lakemeyer 2001) for more
discussion on why standard names are useful. In the fol-
lowing we often simply write “name” instead of “standard

1As LL make use of L the same way as we do in this paper, this
subsection is largely taken from (Lakemeyer and Levesque 2019).

name.” Terms and atomic formulas, also called atoms, are
defined in the usual way, and so are formulas using the con-
nectives ¬ and ∧ and the quantifier ∀.Other connectives like
∨,⊃,≡ and the quantifier ∃ are freely used as syntactic ab-
breviations. Any formula from L is also called an objective
formula. A sentence is a formula without free variables.

Ground terms are terms without variables. Function sym-
bols with names as arguments are called primitive terms,
and predicate symbols with names as arguments are called
primitive atoms. So f(#1,#2) is a primitive term while
f(g(#1),#2) is ground but not primitive.

The semantics is defined in terms of worlds, which are
mappings from the primitive terms into N and from the
primitive atoms into {0, 1}.

The meaning of an arbitrary ground term is given in terms
of its coreferring standard name. Formally, given a ground
term t and a world w we define |t|w (read: the coreferring
standard name for t given w) by:

1. If t ∈ N , then |t|w = t;
2. |h(t1, . . . , tk)|w = w[h(n1, . . . , nk)],

where ni = |ti|w.
The truth of a sentence wrt world w (written as w |= φ) is

defined inductively as follows:
1. w |= p(t1, . . . , tk) iff w[p(n1, . . . , nk)] = 1

where |ti|w = ni;
2. w |= (t1 = t2) iff |t1|w and |t2|w are the same names;
3. w |= ¬φ iff w 6|= φ;
4. w |= (φ ∧ ψ) iff w |= φ and w |= ψ;
5. w |= ∀x. φ iff w |= φxn for all names n;
Here φxn stands for φ with every free occurrence of x re-
placed by n. A sentence φ is valid (|= φ) iff for all worlds
w, w |= φ.

Apart from standard names and equality, L behaves ex-
actly like classical first-order logic: it is shown in (Levesque
and Lakemeyer 2001) that a sentence without standard
names and equality is valid iff it is valid in classical logic.
Standard names are, of course, special in that sentences like
(#6 6= #7) are valid, for example. Also, since the domain of
discourse is infinite, sentences like ∃x∀y(x = y) are unsat-
isfiable in L.

3 A Logic of Limited Reasoning
The language includes all of L and extends it in the follow-
ing way: for any objective formula φ of L, and any non-
negative integer k, Bkφ and Oφ are also formulas. Note, in
particular, that nested beliefs are ruled out.

We follow the convention of using φ and ψ for objective
formulas, and α and β for arbitrary formulas. We use p to
refer to ground atomic formulas (that is, atomic formulas
including equalities without variables), and ρ and τ to refer
to literals, with ρ̄ as the complement of ρ. We let a, b, c, d
refer to clauses, understood as finite sets of literals. Finally
we use θ to refer to ground substitutions, mappings from
variables to ground terms. For any formula α, αθ is the
sentence that results from replacing all free variables x in α
by θ(x).
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Skolemization and dual-Skolemization will be key in
defining the semantics of quantified beliefs. As already
mentioned, an epistemic state will be said to only believe
a KB just in case it only believes a Skolemization of KB,
but, of course, it should not matter which variables and
Skolem symbols are used. In particular, we want to make
sure that two epistemic states which differ only in the choice
of Skolem symbols are considered equivalent in the sense
that they believe the same sentences that do not mention
Skolem symbols. To be able to express this formally, we
need a bit of machinery in order to rename Skolem func-
tions or variables in a quantifier-free formula in a systematic
way. For that we reserve two special infinite sets of func-
tion symbols G and H , to be used for Skolemization and
dual-Skolemization, respectively. (For simplicity, we leave
the arity of these function symbols unspecified). We call a
formula clean if it does not use these Skolem symbols. (The
primary aim in this paper is to specify a logic of belief over
clean sentences, using the ones with Skolem symbols only
as auxiliary support.) Let X be the set of variables in the
language. Then a Skolem renaming is a bijection λ from
(X ∪ G ∪H) to itself, such that λ(x) ∈ X , λ(g) ∈ G, and
λ(h) ∈ H for any x ∈ X , g ∈ G and h ∈ H . Then φλ
is the result of replacing each symbol s ∈ (X ∪ G ∪ H)
in φ by λ(s). Finally, we define three equivalence relations
over quantifier-free formulas: φ ∼ φ′ iff there is a Skolem
renaming λ such that φλ = φ′; φ∼G φ

′ iff φ∼φ′ where the
λ satisfies λ(h) = h; and similarly φ∼H φ

′ iff φ∼φ′ where
the λ satisfies λ(g) = g.

3.1 Extended Worlds and Epistemic States
As noted above, the semantics of the logic relies on a notion
of extended world:

Definition 1 (World) An extended world w is a function
from ground atoms (including equality atoms) to {0, 1, *}.
(When the context is clear, we will just call them “worlds.”)
An extended world w is called standard if there is a two-
valued world w′ from L such that for every ground atom p,
w[p] = 1 iff w′ |= p, and w[p] = 0 iff w′ |= ¬p.

Note that an extended world maps all ground atoms to val-
ues, not just the primitive ones as in L. So, for example, we
can have w[P (n)] = 1 for every standard name n, and still
have w[P (a)] = 0. (However this can never happen with a
standard world.)

Since worlds can support both the truth and falsity of sen-
tences, we use two separate support relations, |=T and |=F

defined as follows:

Definition 2 (World support) For any world w and
quantifier-free sentence φ, the relations w |=T φ and
w |=F φ are defined recursively as follows:

1. w |=T p iff w[p] 6= 0;
w |=F p iff w[p] 6= 1.

2. w |=T ¬φ iff w |=F φ;
w |=F ¬φ iff w |=T φ.

3. w |=T (φ ∨ ψ) iff w |=T φ or w |=T ψ;
w |=F (φ ∨ ψ) iff w |=F φ and w |=F ψ.

For a set of quantifier-free sentences Φ we will sometimes
write w |=T Φ to mean that w |=T φ for all φ ∈ Φ.

It is useful to define a notion of “strong entailment” based
on the idea of extended worlds:

Definition 3 Let φ and ψ be sentences without quantifiers.
Then φ ⇒ ψ if for all extended worlds w, if w |=T φ then
w |=T ψ.

Note that strong entailment is a subset of logical entailment
(that is, if φ ⇒ ψ then the sentence (φ ⊃ ψ) is valid in L),
but it is a proper subset: (p ∧ (¬p ∨ q)) 6⇒ q, for example.
There is, in fact, a close connection between the two notions:

Proposition 1 Let φ and ψ be sentences without quantifiers
that use only atomic sentences p0, . . . , pk. Then (φ ⊃ ψ) is
valid in L iff φ⇒ (ψ ∨

∨
(pi ∧ ¬pi)).

This property is closely related to a similar connection be-
tween tautological entailment, a fragment of relevance logic,
and strong entailment. The difference is that the semantics
of tautological entailment, originally due to Dunn (1976)
and later adopted in (Levesque 1984; Patel-Schneider 1985;
Frisch 1987) and others, offers a fourth truth value “neither
true nor false support.” While this additional truth value
blocks arbitrary tautologies from being entailed, we still
have the connection that φ strongly entails ψ iff

(φ∧
∧

(pi∨¬pi) tautologically entails (ψ∨
∨

(pi∧¬pi)).
We opted to not include the fourth truth value as tautologies
can easily be detected provided a (propositional) formula is
in conjunctive normal form.

Turning now to epistemic states, here is their definition
and how they work with quantifier-free sentences:

Definition 4 (Epistemic state) An extended epistemic state
is any set of extended worlds. (Again, when the context is
clear, we drop the word “extended.”)

In the quantifier-free case, the beliefs of an epistemic state
e at level 0 are exactly those sentences which are supported
by all the worlds in e. The following definitions show how
this set of worlds can be shrunk in an iterative fashion by
successively eliminating certain worlds. Belief at higher lev-
els will then be defined in terms of truth in all the remaining
worlds.

Definition 5 (Unsupported literals)
U(w) = {p | w[p] = 0} ∪ {¬p | w[p] = 1}.

The unsupported literals of w are those that w says cannot
be true.

Definition 6 (Eliminated world) An epistemic state e elim-
inates worldw if there is a ground atom p such that for every
world w′ ∈ e, if U(w) ⊆ U(w′), then w′[p] = *.

Intuitively, e eliminates w if there is some p such that the
claims made by w (in terms of what literals cannot be true)
depend on p having value *. In other words, if we only kept
worlds in e where p had value 0 or 1, no worlds would sup-
port the claims made by w.

Definition 7 (Successor epistemic state)
S(e) = e− {w | e eliminates w}.
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Note that if w is standard, it is never eliminated since for no
p do we have w[p] = *.

Definition 8 (Epistemic state support) For any epistemic
state e, number k, and quantifier-free sentence φ, e→k φ
if for all w ∈ Sk(e), w |=T φ. (Here S0(e) = e.)

Example 1 Consider the simple case where we have only
two atomic sentences p and q. Let w1[p] = w1[q] = 1,
w2[p] = ∗, w2[q] = 0, and let e = {w1, w2}. It is easy to
see that e→0 p ∧ (p ⊃ q) yet e 6→0 q because of w2. Note,
however, that e eliminates w2, that is, S(e) = {w1} and we
obtain e→1 q.

As we will see in the subsections to follow, Bk will be
defined in terms of→k, and we will go over a slightly more
complex example in more detail once we have the full defini-
tion of Bk. While→k is not closed under logical entailment,
it is not hard to see that it is closed under strong entailment:
if φ ⇒ ψ and e→k φ, then e→k ψ. Furthermore, on the
path towards eventual completeness, we have properties like
this:

Lemma 1 Suppose e →k p and e →k (¬p ∨ q). Then
e→k+1 q.

Proof: Suppose w ∈ Sk(e) and w 6|=T q. For any w′ ∈
Sk(e), w′ |=T p, w′ |=T (¬p ∨ q), and if U(w) ⊆ U(w′),
then w′ 6|=T q and so w′[p] = *. So if w ∈ Sk(e) and
w 6|=T q, then Sk(e) eliminates w. It follows that for all
w ∈ Sk+1(e), w |=T q. Hence e→k+1 q.

Regarding Skolem renaming, we have the following:
Definition 9 Let λ be a Skolem renaming. For any world
w, wλ is the world defined by wλ[p] = w[pλ]. For any
epistemic state e, eλ = {wλ | w ∈ e}. Finally, for any two
epistemic states e and e′, we say that e ∼ e′ iff there is a
Skolem renaming λ such that eλ = e′. (The relations e∼G e

′

and e∼H e
′ are analogous.)

Lemma 2 For any quantifier-free sentence ψ and any
Skolem renaming λ, if eλ→k ψ then e→k ψλ.

Proof: The proof is by induction on k, but here we con-
sider just the case k = 0. So assume that eλ→0 ψ and that
w ∈ e. Then wλ ∈ eλ and so wλ |=T ψ. Then (by an
easy induction on the length of ψ), w |=T ψλ. Therefore,
e→0 ψλ.

3.2 Skolemization
The definitions above deal with the quantifier-free part of the
language; quantifiers within beliefs are handled by Skolem-
ization and dual-Skolemization.

Assume that the sentence to be Skolemized only uses the
∃, ∨ and ¬ connectives. We must first rewrite the sentence
with new variables as necessary so that each quantifier is
over a distinct variable. We call a variable an E-variable
if the ∃ that quantifies it appears within an even number
of ¬ symbols, and an A-variable otherwise. We define a
Skolemization of a sentence φ to be any formula that results
from eliminating the quantifiers in φ, and replacing each
E-variable y of φ by a distinct term g(x1, . . . , xk), where

g ∈ G, and the xi are all the A-variables that y appears
within the scope of in φ. We define a dual-Skolemization of
a sentence to be similar, except that each A-variable x is re-
placed by a distinct term h(y1, . . . , yk), where h ∈ H , and
the yi are all the E-variables that x appears within the scope
of in φ. So Skolemization eliminates existential variables
and leaves the universal ones free, while dual-Skolemization
does the reverse. Note that, in contrast to the usual defini-
tion of (dual-)Skolemization, we also remove all remaining
quantifiers. This is done just for convenience as we will need
to replace the now free variables by other terms.

The main property of Skolemization is that the fo-
satisfiability of a set of sentences reduces to the fo-
satisfiability of their Skolemizations:

Proposition 2 Let Φ = {φ1, φ2, . . .} be a set of clean sen-
tences. Let Ψ = {∀ψ1, ∀ψ2, . . .} be a set where each ψi is
a Skolemization of φi using its own distinct Skolem symbols.
Then Φ is fo-unsatisfiable iff Ψ is fo-unsatisfiable.

Note that the definition of Skolemization above does not
specify exactly which Skolem symbols to use in eliminating
existentially-quantified variables or which new variables to
use in replacing variables that are quantified more than once.
We do have that if φ1 and φ2 are Skolemizations of a clean
φ, then φ1∼G φ2, and if ψ1 and ψ2 are dual-Skolemizations
of a clean ψ, then ψ1∼H ψ2. It will be convenient, however,
to name one of these Skolemizations as a representative:

Definition 10 Assume that all the formulas of the language
are ordered in some way. For any sentence φ, SKO(φ) de-
notes the Skolemization of φ that appears first in this order-
ing, and DSKO(φ) does the same for dual-Skolemization.

Note that while DSKO eliminates universally quantified vari-
ables, ¬DSKO(¬φ) is like SKO in eliminating existentially
quantified variables. So a clean sentence φ is fo-unsatisfiable
iff ∀SKO(φ) is fo-unsatisfiable iff ∀¬DSKO(¬φ) is fo-
unsatisfiable.

3.3 Equality and Standard Names
Extended worlds have no special provisions for equality sen-
tences or for the denotations of terms. These are handled in
the logic using two special sets of formulas:

Definition 11
UNA = {(n 6= n′) | n and n′ are distinct standard names}.
Definition 12 The set EQ is UNA together with the follow-
ing infinite set of formulas:

1. (x = x),
2. ¬(x = y) ∨ (y = x),
3. ¬(x = y) ∨ ¬(y = z) ∨ (x = z),
4. ¬(x1 = y1) ∨ · · · ∨ ¬(xk = yk) ∨ (f(x1, . . . , xk) =
f(y1, . . . , yk)), for every k-ary function symbol f ,

5. ¬(x1 = y1) ∨ · · · ∨ ¬(xk = yk) ∨ ¬P (x1, . . . , xk) ∨
P (y1, . . . , yk), for every k-ary predicate symbol P.

The main property we need is this:

Proposition 3 A sentence φ is valid in L iff {¬φ} ∪ EQ is
fo-unsatisfiable.
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Corollary 2 Let φ and ψ be clean sentences. Then the sen-
tence (φ ⊃ ψ) is valid in L iff {SKO(φ),¬DSKO(ψ)}∪EQ
is fo-unsatisfiable.

In the following it will often be convenient to refer to the set
of all ground instances of a set of quantifier-free formulas:

Definition 13 For any set of quantifier-free formulas Φ,
GND(Φ) = {φθ | φ ∈ Φ and θ a ground substitution}.
Herbrand’s Theorem can now be restated as follows: if a set
of quantifier-free formulas Φ is fo-unsatisfiable, then some
finite subset of GND(Φ) is fo-unsatisfiable.

Definition 14 For any set of quantifier-free formulas Φ, let
REP[Φ] be defined by

REP[Φ] = {w | w |=T ψ for every ψ ∈ GND(Φ)∪GND(EQ)}.

In other words, REP[Φ] is the set of all worlds which support
the truth of all ground instances of Φ and EQ.

3.4 Truth and Validity
We are now ready to define truth and validity in the logic of
limited belief:

For any extended world w, extended epistemic state e and
sentence α, the relation e, w |= α is defined recursively as
follows:

1. e, w |= p iff w[p] 6= 0, where p is a ground atom;

2. e, w |= ¬α iff e, w 6|= α;

3. e, w |= (α ∨ β) iff e, w |= α or e, w |= β;

4. e, w |= ∃xα iff for some n, e, w |= αx
n;

5. e, w |= Bkφ iff there are substitutions θ0, . . . , θk such
that e→k (DSKO(φ)θ0 ∨ · · · ∨ DSKO(φ)θk);

6. e, w |= Oφ iff e∼G REP[SKO(φ)].

When α is objective, we sometimes omit the e and write
w |= α; when α is subjective, we sometimes omit the w and
write e |= α. We say that e is representable iff e |= Oφ
for some clean sentence φ. Finally, for any sentence α, we
write |= α and say that α is valid iff e, w |= α for every
representable e and every standard w.

Rules (1)-(4) are the usual ones (as in L). Note that valid-
ity is defined wrt standard worlds only, so that for objective
sentences, validity in this logic agrees with validity in L.

Rules (5) and (6) are admittedly quite a hand full, as they
need to deal with the intricacies of quantifiers in the con-
text of limited belief. It turns out that, if we only consider
the special case of quantifier-free sentences without equality,
the rules can be drastically simplified with an intuitive read-
ing. Therefore, it is instructive to look at this simple case
first together with an example. So let φ be a quantifier-free
objective sentence without equality. Then Rules (5) and (6)
can be rewritten as:

5’ e, w |= Bkφ iff for all w′, if w′ ∈ Sk(e) then w′ |=T φ;

6’ e, w |= Oφ iff for all w′, w′ ∈ e iff w′ |=T φ.

In other words, φ is believed at level k if all those worlds
support φ that remain after removing eliminated worlds from
e in k rounds, and φ is all that is believed if e is the largest
set of worlds supporting φ.

To see how Bk works for different values of k, let us look
at the following example.

Example 2 Suppose there are only three atomic sentences,
p, q and r, and so 3 × 3 × 3 possible (extended) worlds.
Now let e = {w | w |=T {p, (¬p ∨ q), (¬q ∨ r)}}. In other
words, e |= O(p ∧ (¬p ∨ q) ∧ (¬q ∨ r)). Then e does not
include the nine worlds where w[p] = 0, the three worlds
where w[p] = 1 and w[q] = 0, and the single world w110.
(The notation wxyz here means the world where w[p] = x,
w[q] = y, and w[r] = z.) This means that e is the following
set of fourteen worlds:

{w∗∗∗, w∗∗0, w∗∗1, w∗0∗, w∗00, w∗01, w∗1∗,
w∗10, w∗11, w1∗∗, w1∗0, w1∗1, w11∗, w111}.

Some observations:

• e |= B0p, e 6|= B0q, e 6|= B0r.
We can see that q is not believed by virtue of w∗0∗, w∗00,
and w∗01, and that r is not believed by virtue of w∗∗0,
w∗00, w∗10, and w1∗0.

• e |= B1p, e |= B1q, e 6|= B1r.
To calculate S(e), we need the value of U(w) for each
w ∈ e. These are as follows:

U(w∗∗∗) = {}, U(w∗∗0) = {r},
U(w∗0∗) = {q}, U(w∗00) = {q, r},
U(w∗1∗) = {¬q}, U(w∗10) = {¬q, r},
U(w1∗∗) = {¬p}, U(w1∗0) = {¬p, r},
U(w11∗) = {¬p¬q}, U(w111) = {¬p,¬q,¬r}.

U(w∗∗1) = {¬r},
U(w∗01) = {q,¬r},
U(w∗11) = {¬q,¬r},
U(w1∗1) = {¬p,¬r}, }.

It is easy to see that if q ∈ U(w) then w[p] = *. This
means that e eliminates each such world: w∗0∗, w∗00
and w∗01. (This is why q will be believed.) Also, e
eliminates w∗10 and w1∗0. Because of w111, e does not
eliminate w∗∗∗, w∗∗1, w∗1∗, w∗11, w1∗∗, w1∗1 w11∗, and
w111. Finally, e does not eliminate w∗∗0 because w∗10
and w1∗0 assign different atoms to *. (This is why r
is still not believed.) In the end, we have that S(e) =
{w∗∗∗, w∗∗0, w∗∗1, w∗1∗, w∗11, w1∗∗, w1∗1w11∗, w111}.
Hence, clearly e |= B1q since for all w ∈ S(e) we have
that w |=T q.

• e |= B2p, e |= B2q, e |= B2r.
For every w ∈ S(e) other than w∗∗0, S(e) does
not eliminate w because of w111. However, S(e)
will eliminate w∗∗0 (because the w∗10 and w1∗0 of
the previous step are now gone). So S(S(e)) =
{w∗∗∗, w∗∗1, w∗1∗, w∗11, w1∗∗, w1∗1w11∗, w111}, and r
is believed at level 2.

We will see below that these properties regarding B0, B1,
and B2 follow from the general way belief relates to Reso-
lution (see especially Lemma 5).
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Let us now go back to Rules (5) and (6) in their full gen-
erality. In essence they reduce belief and only-believing
to the quantifier-free case after Skolemization or dual-
Skolemization, also taking into account equality. This is
illustrated by the following theorem:

Theorem 2 For clean sentences φ and ψ, |= (Oφ ≡ O∀φ′)
and |= (Bkψ ≡ Bk∃ψ′), where φ′ = SKO(φ) and ψ′ =
DSKO(ψ).

Proof: Follows immediately from the fact that
SKO(∀φ′) = φ′ and DSKO(∃ψ′) = ψ′.

Note that even though in this logic there is not a unique epis-
temic state that satisfies Oφ, the states that satisfy it are all
very similar, in that they satisfy the same subjective sen-
tences:

Lemma 3 Suppose e1 ∼G e2. For any clean sentence φ,
e1 |= Oφ iff e2 |= Oφ.

Proof: Follows from the fact that∼G is an equivalence
relation.

Lemma 4 Suppose e1 ∼G e2. For any clean sentence ψ,
e1 |= Bkψ iff e2 |= Bkψ.

Proof: Suppose that e2λ = e1 for some bijection λ
from G to G, and e1 |= Bkψ, so that there are substi-
tutions θ0, . . . , θk such that e1 →k [DSKO(ψ)θ0 ∨ · · · ∨
DSKO(ψ)θk]. By Lemma 2, e2→k [

∨
DSKO(ψ)θi]λ. Since

ψ is clean and DSKO does not introduce symbols from G,
[
∨

DSKO(ψ)θi]λ =
∨

DSKO(ψ)(θiλ). So there are substi-
tutions θ′0, . . . , θ

′
k such that e2 →k

∨
DSKO(ψ)θ′i. There-

fore, e2 |= Bkψ.

Corollary 3 Suppose e1 ∼G e2. For any clean subjective
sentence σ, e1 |= σ iff e2 |= σ.

Proof: The proof is by induction on σ with Lemmas 3 and
4 as base cases.

Theorem 3 For any clean objective sentence φ and clean
subjective σ, |= (Oφ ⊃ σ) iff e |= σ, where e =
REP[SKO(φ)].

Proof: The (⇒) direction is immediate, and the (⇐) di-
rection follows directly from Corollary 3.

Note that there is no special rule in the logic for equal-
ity. When it comes to truth involving equality, standard
worlds deliver all the expected properties from L. When
it comes to belief involving equality, however, the axioms
of equality EQ (including UNA) are conceptually added to
the knowledge base (via REP) to be reasoned with, like any-
thing else. So although there are extended worlds w where
w 6|=T (n = n) and w 6|=T (n′ 6= n) for distinct names n′
and n, once the axioms of equality are taken into account,
we get these sentences as beliefs (that is, B0(n = n) and
B0(n′ 6= n) are both valid).

Before looking at general properties of this logic, let us
consider a simple example involving equality and standard
names:

Example 3 |= O[∀x.x 6= #5 ⊃ P (x)] ⊃ B1P (#7).
Let e = REP[x 6= #5 ⊃ P (x)]. By Theorem 3, it

is sufficient to show that e |= B1P (#7). We have that
e→0 (#7 6= #5⊃P (#7)) and e→0 (#7 6= #5) from UNA.
So by Lemma 1, e→1 P (#7), and therefore e |= B1P (#7).

4 Properties of the Logic
In this section, we confirm that the logic of belief defined
above satisfies the desiderata listed at the beginning of the
paper, and then consider other logical properties of the be-
lief.

4.1 Satisfying the Desiderata
Cumulativity
Theorem 4 |= (Bkψ ⊃ Bk+1ψ).

Proof: This follows from the fact that S(e) ⊆ e, and so if
e→k γ, then e→k+1 γ.

Expressiveness We use the following property of Skolem-
ization:

Proposition 4 For any objective sentence φ, there is a sub-
stitution θ∗ such that SKO(φ)θ∗ = DSKO(φ)θ∗.

Theorem 5 For any clean sentence φ, there is an epistemic
state e such that e |= Oφ, and moreover |= (Oφ ⊃ B0φ).

Proof: Let e = REP[SKO(φ)]. Then clearly e |= Oφ.
To show that |= (Oφ ⊃ B0φ), by Theorem 3, it suffices
to show that e |= B0φ. Now let θ∗ be as in Proposition 4.
Let w be any element of e = REP[SKO(φ)]. It follows that
w |=T SKO(φ)θ∗, and hence w |=T DSKO(φ)θ∗. Therefore,
e→0 DSKO(φ)θ∗ and so e |= B0φ.

Soundness and Eventual Completeness We will be prov-
ing soundness and eventual completeness using proposi-
tional Resolution. First, we turn to clauses, which are fi-
nite sets of literals, interpreted disjunctively. In other words,
w |=T c iff for some ρ ∈ c, w |=T ρ; w |=F c iff for every
ρ ∈ c, w |=F ρ. So the empty clause, written [], is under-
stood to satisfy w 6|=T [] and w |=F [] for every w. We define
the conversion of a quantifier-free formula into clausal form
as follows:
Definition 15 Assume that φ has no quantifiers and has
been rewritten so that it does not use ∨, ⊃, or ≡. Then
CNF(φ) is a finite set of clauses defined inductively by:

1. CNF(φ) = {{φ}}, when φ is a literal;
2. CNF(φ ∧ ψ) = CNF(φ) ∪ CNF(ψ);
3. CNF(¬¬φ) = CNF(φ);
4. CNF(¬(φ ∧ ψ)) = {a ∪ b | a ∈ CNF(¬φ), b ∈

CNF(¬ψ)}.
Note that for any w and any quantifier-free sentence φ,
w |=T φ iff for every c ∈ CNF(φ), w |=T c. Finally, we
define the direct resolvents of a set of ground clauses:
Definition 16 For any set of ground clauses C, let RP(C)
be the set of clauses defined by

C∪{(a∪b) | for some p, ({p}∪a) ∈ C, ({¬p}∪b) ∈ C}.
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Notice that RP applies one step of propositional Resolution
to C, and in general, RPk applies k steps. We will be using
the following property of Resolution:

Proposition 5 Let C be a a set of ground clauses and d a
non-tautologous ground clause. Then C ∪ {¬d} is unsatis-
fiable iff for some k and d′, d′ ⊆ d and d′ ∈ RPk(C).

As a special case of this proposition, we have the usual
“refutation completeness” of Resolution: C is unsatisfiable
iff for some k, [] ∈ RPk(C).

The following lemma shows a tight connection between
the notion of eliminating worlds from {e |w |=T C}, where
C is a set of ground clauses, and Resolution:

Lemma 5 Let C be any set of ground clauses and let e =
{w | w |=T C}. Then Sk(e) = {w | w |=T RPk(C)}.
Proof: The lemma holds by induction on k. Here we only
show the base case for k = 1: if e = {w | w |=T C} then
S(e) = {w | w |=T RP(C)}.

(⇒) We show that if w 6|=T RP(C) then e eliminates w,
and so w 6∈ S(e). Since w 6|=T RP(C), there is ({p} ∪ b) ∈
C, ({¬p} ∪ d) ∈ C, such that w 6|=T (b ∪ d). So (b ∪ d) ⊆
U(w). Therefore, for any w′ ∈ e such that U(w) ⊆ U(w′),
it follows that w′ 6|=T (b∪c) and therefore w′[p] = *. Hence
e eliminates w.

(⇐) We show that if w |=T RP(C) then e does not elim-
inate w, and so w ∈ S(e). To do so, we show that for every
p, there is a w′ ∈ e such that U(w) ⊆ U(w′) and where
w′[p] 6= *. First, suppose that w[p] 6= *; then let w′ = w
and the claim is satisfied. Otherwise, if w[p] = *, define
w′ to be like w except on p, where w′[p] = 1 if for some
({p}∪b) ∈ C, w 6|=T b, and 0 otherwise. So U(w) ⊆ U(w′)
and w′[p] 6= *. To show that w′ ∈ e, we show that for any
d ∈ C, w′ |=T d. There are three cases.

1. If d does not include p or¬p, thenw′ |=T d sincew |=T d.
2. If d = ({p}∪d′) then there are two subcases: if w 6|=T d

′,
thenw′[p] = 1 and sow′ |=T d; ifw |=T d

′, thenw′ |=T d
and so w′ |=T d.

3. If d = ({¬p}∪d′) then there are two subcases: if w′[p] =
0, clearly, w′ |=T d; if w′[p] = 1, then there is an ({p} ∪
b) ∈ C where w 6|=T b. Since w |=T RP(C), w |=T

(b ∪ d′) and so w |=T d
′. It follows that w′ |=T d and so

w′ |=T d.

In a way, the lemma can be seen as providing a seman-
tic justification of a resolution step in terms of eliminating
certain non-standard worlds.

Corollary 4 For any set C of ground clauses which con-
tains GND(EQ), Sk(REP[C]) = REP[RPk(C)].

Proof: Since GND(EQ) ⊆ C, REP[C] = {w |w |=T C}
and REP[RPk(C)] = {w |w |=T RPk(C)}. The corollary
then follows immediately from the previous lemma.

Lemma 6 Let C be a set of ground clauses containing
GND(EQ) and ψ a sentence without quantifiers. Then C ∪
{¬ψ} is unsatisfiable iff there is a k such that REP[C]→k ψ.

Proof: (⇒) Suppose C ∪ {¬ψ} is unsatisfiable and let
d be any non-tautologous clause in CNF(ψ). Then C ∪
{¬d} is unsatisfiable and by Proposition 5, there is an i
and a c ∈ RPi(C) such that c ⊆ d. So for any w ∈
REP[RPi(C)], w |=T d. By Corollary 4, REP[RPi(C)] =
Si(REP[C]). So REP[C] →i d. Now let k be the maxi-
mum of these i values over all clauses of CNF(ψ). Then
REP[C]→k ψ.

(⇐) SupposeC∪{¬ψ} is satisfiable. Then there is a stan-
dard world w in REP[C] such that w |=T ¬ψ and so w 6|=T

ψ. Since w is standard, for every k, w ∈ Sk(REP[C]).

Theorem 6 Let φ and ψ be clean objective sentences. Then
|=(φ ⊃ ψ) iff for some k, |=(Oφ ⊃ Bkψ).

Proof: |=(φ ⊃ ψ) iff (by Corollary 2) C ∪ {¬DSKO(ψ)}
is fo-unsatisfiable, where C = CNF(SKO(φ)) ∪ EQ
iff (by Theorem 1) some finite subset of GND(C ∪
{¬DSKO(ψ)}) is unsatisfiable iff there exist θ0, . . . , θs
such that GND(C) ∪ {¬γ} is unsatisfiable, where γ =
[DSKO(ψ)θ0 ∨ · · · ∨ DSKO(ψ)θs] iff (by Lemma 6) there
is an r such that REP[GND(C)] →r γ iff (letting k be
the maximum of r and s and noting that REP[GND(C)] =
REP[SKO(φ)]) there is a k such that REP[SKO(φ)] |= Bkψ
iff (by Theorem 3) there is a k such that |=(Oφ ⊃ Bkψ).

Tractability We will address tractability in two steps, first
by considering the simpler case of quantifier-free formulas
without equality and then the full first-order case with equal-
ity.

Looking over the details of the proof of soundness and
eventual completeness above, it is not hard to see that, if
φ and ψ are quantifier-free sentences without equality, then
|= (Oφ ⊃ Bkψ) iff for all non-tautologous clauses d ∈
CNF(ψ), there is a d′ ∈ RPk(CNF(φ)) such that d′ ⊆ d. In
other words, in order to figure out whether |= (Oφ ⊃ Bkψ)
holds it suffices to check, for each clause in the CNF of ψ,
whether it contains complementary literals or is subsumed
by some clause obtained by at most k resolution steps from
the clauses in the CNF of φ.

Using this, we can show that it is possible to efficiently
decide if |=(Oφ ⊃ Bkψ) under these assumptions: the k is
small, the query ψ is small, and if the KB φ itself is large, it
is only because it is a large conjunction of sentences that are
themselves small.

Theorem 7 There is a procedure that takes as input a num-
ber k, and quantifier-free sentences φ1, . . . , φN and ψ, and
decides whether or not |=(O[φ1∧· · ·∧φN ] ⊃ Bkψ). More-
over, if the inputs are restricted such that for some number
c, k ≤ c, |φi| ≤ c, and |ψ| ≤ c, then the procedure will run
in time that is polynomial in N .

Proof: Here is the procedure. First, calculate D =
CNF(ψ) and Ci = CNF(φi). (These will be polynomial
in N since ψ and each φi are bounded.) Then calculate
C = RPk(C1 ∪ · · · ∪CN ), which will also be polynomial in
N since k is bounded. Finally, check that for each non-taut.
d ∈ D, there is a d′ ∈ C such that d′ ⊆ d.
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Note that even in this quantifier-free case, the tractability can
fail for sentences that are not in the required form above.
As a simple example, note that for any quantifier-free φ, we
have that |= (Oφ ⊃ B0ψ) whenever ψ =

∧
CNF(φ), but

there is no guarantee that this conversion to CNF can be de-
termined efficiently.

One may wonder whether existing technology like SAT-
solvers would be of any help in computing the beliefs at level
k in the quantifier-free case. We believe that this is unlikely
mainly because the question whether or not a set of clauses
is satisfiable seems to tell us very little if anything about
the beliefs at a fixed level k. For example, consider an un-
satisfiable sentence φ and let q be an atomic sentence not
occurring in φ. Suppose |= Oφ ⊃ B17q yet 6|= Oφ ⊃ Bkq
for all k < 17. In other words, the inconsistency is detected
only at level 17 and beyond. A SAT-solver may well be able
to figure out that φ is unsatisfiable, but it will not be able to
give us finer-grained distinctions.

Let us now turn to the full first-order case with equality.
Again, from the discussion of soundness and completeness
we have that
|=(Oφ ⊃ Bkψ) iff there are substitutions θ0, . . . , θk
such that for all non-tautologous
d ∈ CNF(DSKO(ψ)θ0 ∨ · · · ∨ DSKO(ψ)θk) there is a
c ∈ RPk(GND(CNF(SKO(φ)) ∪ EQ)) such that c ⊆ d.

We want to show that under certain reasonable assumptions,
it will be possible to efficiently decide if |= (Oφ ⊃ Bkψ).
The problem with this is is that we cannot simply calculate
RPk(GND(CNF(SKO(φ))∪EQ)) since this is an infinite set
of clauses. To get around this, we restrict EQ to be finite and
we replace RP by RQ, the first-order version of Resolution
that handles clauses with variables (via most general unifiers
and so on). We will end up using something like this:

|=(Oφ ⊃ Bkψ) iff there are substitutions2 θ0, . . . , θk
such that for all non-tautologous
d ∈ CNF(DSKO(ψ)θ0 ∨ · · · ∨ DSKO(ψ)θk)there is a
c ∈ RQk(CNF(SKO(φ)) ∪ EQ′) and a θ such that cθ ⊆ d.

where EQ′ is EQ restricted to the function and predicate
symbols appearing in SKO(φ) or DSKO(ψ), with UNA re-
stricted to a finite set of standard names. Here we will be
able to calculate RQk(CNF(SKO(φ)) ∪ EQ′), and the rest
will involve guessing the appropriate substitutions. The pre-
cise definitions are as follows:

Definition 17 For any two literals ρ and τ, MGU[ρ, τ ] is
the set of most general unifiers of ρ and τ (empty if the two
literals do not unify).

Definition 18 For any set C of clauses, F (C) is the union
of F (c) for all c ∈ C, where

F (c) = {c}∪F ({cθ | {ρ, τ} ⊆ c, ρ 6= τ, θ ∈ MGU[ρ, τ ]}).
Definition 19 For any set C of clauses,
RQ(C) = C∪{(a∪b)θ | {ρ}∪a ∈ F (C), {τ}∪b ∈ F (C),

θ ∈ MGU[ρ̄, τ ]}.
2In contrast to the rest of the paper, here we need substitutions

which may be non-ground.

Note that Definition 18 realizes what is known as Factor-
ing, that is, the unification of literals within the same clause,
which is needed for Resolution to be complete. In the def-
initions of F and RQ, we assume the clauses in C use dis-
tinct variables, and that just one θ is chosen (if one exists) so
that the new clauses also have distinct variables. The main
property of this first-order Resolution is the following gen-
eralization of Proposition 5:

Proposition 6 Let C be a a set of clauses and d a non-
tautologous ground clause. Then C ∪ {¬d} is unsatisfiable
iff for some k, d′, and θ, d′θ ⊆ d and d′ ∈ RQk(C).

We now prove that calculating what is believed at level k
can be efficiently computed under the assumptions that the
query is not too large, the k is not too large, and while the
KB may be large, it is because it is a large conjunction of
sentences that are not too large:

Theorem 8 There is a procedure for deciding if |=(O[φ1 ∧
· · · ∧ φN ] ⊃ Bkψ) that runs in time that is polynomial in
N under the assumption that for some constant c, k ≤ c,
|φi| ≤ c, and |ψ| ≤ c.
Proof: Here is a sketch of the procedure. First, calcu-
late C = CNF(SKO(

∧
φi)). (This will be polynomial in N ,

since each φi is bounded.) Let r = |
∧
φi|.

Then calculate EQ′ from the given φi and ψ. Here the
main complication is to limit the number of elements from
UNA to a finite subset UNA′. It can be shown that UNA′ can
be restricted to those elements from UNA which mention the
names in φ and ψ plus max{2k, (k + 1) ∗ |ψ|} new names.
(The size of UNA′ is polynomial since k and ψ are bounded.)

Having a finite EQ′ in hand, we calculate RQk(C ∪ EQ′),
which will also be polynomial. Next, guess at the (k + 1)
substitutions θj and calculate D = CNF(

∨
DSKO(ψ)θj).

(Again, the k and ψ are bounded. The “guessing” of a ap-
propriate substitutions can be made determinate by trying
all potential MGUs between terms in DSKO(ψ) and terms in
RQk(C∪EQ′), of which there are only polynomially many.)
Finally, check that for each non-tautologous d ∈ D, there is
a c ∈ C such that cθ ⊆ d for some θ. (This is a special case
of theta-subsumption.)

4.2 Logical Transformations within Beliefs
In this subsection, we consider belief equivalence with re-
spect to logical operators within a belief. The main theorem
is this:

Theorem 9 (Equivalent beliefs) For any k and any clean
sentences φ, ψ, and χ, the following sentences are valid:

Bkφ ≡ Bk(φ ∧ φ),
Bkφ ≡ Bk(φ ∨ φ),
Bkφ ≡ Bk¬¬φ,
Bk(φ ∧ ψ) ≡ Bk(ψ ∧ φ),
Bk(φ ∨ ψ) ≡ Bk(ψ ∨ φ),
Bk(φ ∧ (ψ ∧ χ)) ≡ Bk((φ ∧ ψ) ∧ χ)),
Bk(φ ∨ (ψ ∨ χ)) ≡ Bk((φ ∨ ψ) ∨ χ)),
Bk(φ ∧ (ψ ∨ χ)) ≡ Bk((φ ∧ ψ) ∨ (φ ∧ χ)),
Bk(φ ∨ (ψ ∧ χ)) ≡ Bk((φ ∨ ψ) ∧ (φ ∨ χ)),
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Bk(¬(φ ∧ ψ)) ≡ Bk(¬φ ∨ ¬ψ),
Bk(¬(φ ∨ ψ)) ≡ Bk(¬φ ∧ ¬ψ).

These are all shown to be valid in roughly the same way.
First note that the items in the theorem are easy to prove

when the formulas do not contain quantifiers. This is be-
cause propositional beliefs at any level are closed under
strong entailment (see Definition 3). For example, to prove
that Bk(φ∨ψ) logically implies Bk(ψ∨φ), we would sim-
ply observe that (φ ∨ ψ) ⇒ (ψ ∨ φ). For space reasons we
are not able to include a proof of the general case except to
note that it follows from this lemma:

Lemma 7 Let φ and ψ be clean formulas for which there
are dual-Skolemizations φ′ and ψ′ such that φ′θ ⇒ ψ′θ for
every θ. Then |=(Bkφ ⊃ Bkψ).

Although the above theorem sanctions many logical trans-
formations within beliefs (for example, converting a belief
into CNF), it does not sanction Modus Ponens:

Theorem 10 (Non-equivalent beliefs) There are clean ob-
jective sentences without quantifiers φ and ψ such that |=
(φ ≡ ψ), but 6|=(Bkφ ≡ Bkψ).

Proof: Let p and q be distinct atomic sentences. Let φ =
(p ∧ (¬p ∨ q)) and ψ = (φ ∧ q). Then |= (φ ≡ ψ), but
6|=(B0φ ≡ B0ψ).

4.3 Logical Combinations of Beliefs
The final thing we consider in this section is the relationship
between beliefs and logical combinations of other beliefs.
For the most part, the arguments will be similar to those
seen above. We need something new, however, to deal with
standard names. Recall that in the logic, quantifiers outside
the context of a belief are interpreted in the usual way using
standard names. Some notation: if a is a constant and n is
a standard name, we let φan denote the formula that results
from replacing all occurrences of a in φ by n. We get the
following:

Lemma 8 Let e be representable, and let ψ be any sentence
without quantifiers that uses a ∈ H as a constant. If e→k ψ
then e→k ψ

a
n for any name n.

Lemma 9 If γ is a quantifier-free sentence that uses a ∈ H
as a constant, then |= (Bk∃γ ⊃ Bk∃γan) for any standard
name n.

Lemma 10 Let φ be a formula without quantifiers. Then
|=(Bk∃φxn ⊃ Bk∃φ).

Here is the main theorem of this subsection involving the
disjunction, conjunction, and quantification of belief:

Theorem 11 (Combinations of beliefs) For any clean sen-
tences φ and ψ and any clean formula γ with a single free
variable x:

1. |= (Bkφ ∨Bkψ) ⊃ Bk(φ ∨ ψ).

2. |= Bk(φ ∧ ψ) ⊃ (Bkφ ∧Bkψ), but the converse fails.
3. |= ∃xBkγ ⊃ Bk∃xγ.
4. |= Bk∀xγ ⊃ ∀xBkγ, but the converse fails.

Proof:
1. We show that |=(Bkφ ⊃ Bk(φ ∨ ψ)); the other disjunct

is analogous. Suppose DSKO((φ∨ψ)) is (φ′ ∨ψ′) where
φ′ is a dual Skolemization of φ. We have that φ′θ ⇒ (φ′∨
ψ′)θ for every θ, and so the result follows from Lemma 7.

2. We show that |=(Bk(φ∧ψ) ⊃ Bkφ); the other conjunct
is analogous. Suppose DSKO((φ∧ψ)) is (φ′ ∧ψ′) where
φ′ is a dual Skolemization of φ. We have that (φ′∧ψ′)θ ⇒
φ′θ for every θ, and so the result follows from Lemma 7.
Regarding the converse, let φ be ∃x.P (x), ψ be ∃y.Q(y),
and let

e = REP[(P (#1) ∨ P (#2)) ∧ (Q(#1) ∨Q(#2))].

Then e |= B1φ and e |= B1ψ, but e 6|= B1∃x∃y.P (x) ∧
Q(y) and so e 6|= B1(φ ∧ ψ).

3. If e |= ∃xBkγ, then for some standard name n, e |=
Bkγ

x
n. Suppose DSKO(∃xγ) is γ1 and DSKO(γxn) is γ2xn,

so that γ1 ∼H γ2. Then by Theorem 2, e |= Bk∃γ2xn.
By Lemma 7, e |= Bk∃γ1xn, and so by Lemma 10, e |=
Bk∃γ1. So by Theorem 2, e |= Bk∃xγ.

4. Let n be any standard name. Suppose DSKO(∀xγ) is γ1xa
where a ∈ H , and let γ2xn be a dual-Skolemization of γxn
that does not use a anywhere, so that γ1∼H γ2. Now sup-
pose e |= Bk∀xγ. Then by Theorem 2, e |= Bk∃γ1xa. By
Lemma 7, e |= Bk∃γ2xa and by Lemma 9, e |= Bk∃γ2xn
since a does not appear in γ2. So by Theorem 2, e |=
Bkγ

x
n. Since this applies to any standard name n, it fol-

lows that if e |= Bk∀xγ then e |= ∀xBkγ.
Regarding the converse, let γ = (x 6= #1 ∨ x 6= #2)
and e = REP[EQ]. Then for every standard name n, e |=
B0γ

x
n, and so e |= ∀xB0γ. But for any a ∈ H , e 6|=

B0γ
x
a , and so e 6|= B0∀xγ.

Note that unlike belief in classical possible-world semantics
we do not get the usual closure of belief under conjunction
or under universal quantification. (These are the converses
in the theorem above that are shown not to hold.) We do
however get “eventual” versions of these closures.

Theorem 12 For φ, ψ, γ as in Theorem 11, any k, and any
representable e,

1. If e |=(Bkφ∧Bkψ), then for some k′, e |= Bk′(φ∧ψ).

2. If e |= ∀xBkγ, then for some k′, e |= Bk′∀xγ.

The theorem follows easily from soundness and eventual
completeness (Theorem 6) and this lemma:

Lemma 11 Let e be representable with e |= Oφ for some
clean φ. Then for any clean ψ and any k, e |= Bkψ iff |=
Oφ ⊃ Bkψ.

We remark that, besides satisfying the same principles
of soundness, eventual completeness, cumulativity, and
tractability as in LL, Theorems 9, 11 and 12 hold in both
logics, but the proofs are quite different, of course. So do
the two logic have the same valid sentences? The answer is:
almost. There are subtle differences in the way elements of
UNA are handled. For example, if KB = (#1 = #2 ∨ p),
then p is believed at level 0 in the case of LL, while we
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obtain p only at level 1. This is because we require one res-
olution step using (#1 6= #2) from UNA. Essentially, LL
get p for free because of unsatisfiable atoms like (#1 = #2)
are filtered out automatically when testing for subsumption.
While this means that sometimes one may need to go to a
higher belief level than in LL to obtain a belief, we regard
the overall impact as minor. In fact, we conjecture that the
two logics are identical when restricted to sentences without
equality. Alternatively, we believe that it would be easy to
modify the way subsumption is handled in LL so that the
two logics become identical for the whole language.

5 Related Work
As already mentioned, modeling belief in terms of possible
worlds (Kripke 1959) goes back to the seminal work of Hin-
tikka (Hintikka 1962) (see also (Halpern and Moses 1992)
for a survey and in-depth study). Since the use of classical
(two-valued) worlds invariably leads to logical omniscience,
making reasoning intractable in the propositional and unde-
cidable in the first-order case, Hintikka already suggested
the use of impossible worlds to address this issue (Hintikka
1975). In KR this idea was developed further by consider-
ing four-valued worlds as a basis of weaker models of belief
or inference, see (Levesque 1984; Cadoli and Schaerf 1996;
Frisch 1987; Fagin et al. 1990; Delgrande 1995; Cadoli and
Schaerf 1996) for propositional and (Patel-Schneider 1985;
Lakemeyer 1996; Lakemeyer and Levesque 2016) for first-
order approaches. The underlying inference mechanisms are
also closely related to tautological entailment (Dunn 1976),
a fragment of relevance logic (Anderson and Belnap 1975).

The idea to consider levels of belief within a modal epis-
temic logic, where epistemic states are represented as sets of
clauses, originated in (Liu et al. 2004), was further refined
in (Liu and Levesque 2005; Lakemeyer and Levesque 2013;
2014; 2016; Schwering 2017), and culminated in LL’s most
recent proposal (Lakemeyer and Levesque 2019). Except
for LL, belief levels in this line of work are defined in terms
of splitting, either on a clause in the epistemic state (Liu et
al. 2004; Liu and Levesque 2005; Lakemeyer and Levesque
2013), an arbitrary ground literal (Lakemeyer and Levesque
2014), or on the possible denotations of a term (Lakemeyer
and Levesque 2016; Schwering 2017). For example, split-
ting on a literal l at belief level k means adding l to the epis-
temic state and then checking whether the belief in question
obtains at level k − 1, and doing the same for the com-
plement of l. All of these belief models, again with the
exception of LL, have the property that each belief level
is closed under unit propagation, that is, resolution with a
clause containing a single literal. In all cases reasoning is
tractable at every belief level k. A notable exception to
the use of clauses as semantic primitive is (Klassen et al.
2015), where epistemic states are defined in terms of a three-
valued variant of neighborhood semantics (Montague 1968;
Scott 1970). Belief levels are again defined in terms of split-
ting on literals, and tractability obtains at every level. How-
ever, the work is limited to the propositional case. Among
the above proposals, LL is the only one which is expres-
sive, eventually complete, and tractable for the full lan-
guage. We remark that (Lakemeyer and Levesque 2014;

Klassen et al. 2015; Lakemeyer and Levesque 2016) are
eventually complete for the propositional fragment.

Beginning with (Dalal 1996), there has also been work
on tractable entailment relations of increasing complexity,
again limited to a propositional language. Perhaps the
most advanced such proposal is (D’Agostino 2015), which
is based on a three-valued nondeterministic semantics first
considered in (Crawford and Etherington 1998). The author
defines a k-consequence relation, which features splitting on
arbitrary formulas and closure under unit propagation. The
k-consequence relation is eventually complete and a proof-
theoretic account is also provided.

6 Conclusions
In this paper we proposed a model of limited belief, which
shares desirable properties such as expressiveness, tractabil-
ity and eventual completeness with the recently proposed
logic by Lakemeyer and Levesque. In contrast to LL’s se-
mantics, which is based on clauses, ours uses three-valued
possible worlds. Besides being more appealing semanti-
cally, defining belief in terms of a set of possible worlds
lends itself naturally to extensions involving nested beliefs.
While the details remain to be worked out, it does not
seem to be hard to obtain properties like full introspection
(Bkα ⊃ BkBkα and ¬Bkα ⊃ Bk¬Bkα), at least for
the propositional fragment of the language. Another avenue
that deserves further investigation would be to include more
“easy” inferences at all levels. For example, as mentioned
above, (Liu et al. 2004) and its descendants close beliefs
under unit propagation. If we want to add such easy in-
ferences without having to go to higher belief levels, at least
two problems need to be addressed: (1) given the expressive-
ness of our language, where function symbols can be nested
arbitrarily, unit propagation needs to be restricted to avoid
undecidability; (2) it remains to be seen how to integrate a
form of unit propagation into our possible-world framework.
For the latter ideas from (Crawford and Etherington 1998;
D’Agostino 2015), where unit propagation is given a seman-
tic justification, may be useful.
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