
Symbolic Solutions for Symbolic Constraint Satisfaction Problems

Alexsander Andrade de Melo1 , Mateus de Oliveira Oliveira2

1Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
2University of Bergen, Bergen, Norway

aamelo@cos.ufrj.br, mateus.oliveira@uib.no

Abstract

A fundamental drawback that arises when one is faced with
the task of deterministically certifying solutions to compu-
tational problems in PSPACE is the fact that witnesses may
have superpolynomial size, assuming that NP is not equal to
PSPACE. Therefore, the complexity of such a deterministic
verifier may already be super-polynomially lower-bounded
by the size of a witness. In this work, we introduce a new
symbolic framework to address this drawback. More pre-
cisely, we introduce a PSPACE-hard notion of symbolic con-
straint satisfaction problem where both instances and solu-
tions for these instances are implicitly represented by ordered
decision diagrams (i.e. read-once, oblivious, branching pro-
grams). Our main result states that given an ordered decision
diagram D of length k and width w specifying a CSP in-
stance, one can determine in time f(w,w′) · k whether there
is an ODD of width at most w′ encoding a solution for this
instance. Intuitively, while the parameter w quantifies the
complexity of the instance, the parameter w′ quantifies the
complexity of a prospective solution. We show that CSPs
of constant width can be used to formalize natural PSPACE
hard problems, such as reachability of configurations for Tur-
ing machines working in nondeterministic linear space. For
such problems, our main result immediately yields an algo-
rithm that determines the existence of solutions of width w in
time g(w) · n, where g : N → N is a suitable computable
function, and n is the size of the input.

1 Introduction
One of the main drawbacks when dealing with compu-
tational problems which lie in complexity classes beyond
NP is the fact that witnesses for YES instances of these prob-
lems may not have polynomial size. Indeed, in the case of
PSPACE-hard problems, YES instances cannot be certified
in polynomial time, unless NP=PSPACE. One approach to-
wards solving PSPACE complete problems is to use gen-
eralizations of propositional proof systems to the context
of quantified formulas (Balabanov, Widl, and Jiang 2014;
Narizzano et al. 2009). In this case, proofs of satisfiabil-
ity/unsatisfiability play the role of certificates for YES/NO
instances respectively. The drawback however, is that proofs
may still have exponential size, and that the search for such
proofs is non-deterministic.

In this work, we introduce a new symbolic framework
for certifying YES instances of PSPACE-complete prob-

lems. More precisely, we introduce a new symbolic no-
tion of constraint satisfaction problem (CSP) where both in-
stances and assignments are encoded using the notion of or-
dered decision diagrams (ODDs), a straightforward gener-
alization of the notion of ordered binary decision diagrams
(OBDDs) to non-binary alphabets. Our main result (Theo-
rem 1) states that for each w,w′ ∈ N, the process of de-
termining whether a given CSP of width w has a solution
of width w′ can be solved in time f(w,w′) · k, where f is
a suitable function depending only on w and on w′ and k
is the length of the input ODD. In the terminology of pa-
rameterized complexity theory (Downey and Fellows 1999;
Cygan et al. 2015), our algorithm is fixed parameter tractable
with respect to the parameters w and w′.

Our second main result (Theorem 11) states that the task
of determining whether a CSP of constant width has a so-
lution is already PSPACE-hard. The family of CSPs that
we use to prove this hardness result encode natural grid-like
CSPs with uniform horizontal and vertical nearest-neighbor
constraints. Satisfiability for these CSPs generalize natural
PSPACE-hard reachability problems, such as configuration
reachability for cellular automata and for non-deterministic
linear space Turing machines. Interestingly, for such CSPs
of constant width, the complexity of satisfiability is directly
correlated with the complexity of a prospective satisfying
assignment. In particular, our main result immediately gives
rise to an algorithm running in time g(w) · k that deter-
mines whether a CSP instance encoded by an ODD of length
k has a satisfying assignment of width at most w, where
g : N→ N is a suitable function depending only on w.

It is worth highlighting some fundamental differences
in the way in which ODDs are used in our work and in
the way in which other notions of ordered decision di-
agrams have been used in previous works (Bollig 2012;
Bollig 2014; Hachtel and Somenzi 1993; Woelfel 2006;
Sawitzki 2004). The main difference is that in previous
works each path in an ODD (or analogue formalisms) en-
codes a whole assignment for the variables of the input in-
stance. Therefore, in these contexts, an ODD encodes a set
of solutions. On the other hand, in our approach, a path in
an ODD encodes the assignment of a single variable, and
the whole ODD is used to encode a single assignment. As
a consequence, in our approach we can encode assignments
for CSP instances containing exponentially many variables.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

49

This conceptual difference creates several challenges. For
instance, even the process of characterizing whether a given
ODD encodes a valid solution of a given CSP instance is a
challenging task that required the development of new ma-
chinery for the manipulation of ODDs which may be of in-
dependent interest.

It is worth noting that our results cannot be obtained from
techniques developed in other contexts which study CSPs
from the perspective of structural graph theory such as the
techniques developed in (Alekhnovich and Razborov 2002;
Allender et al. 2014; Courcelle 1990; Courcelle, Makowsky,
and Rotics 2000) to tackle CSPs of bounded treewidth or
cliquewidth. Indeed, as we have shown in Section 6, CSPs
whose constraint graphs are grids may have constant ODD
width. On the other hand, grids have treewidth Ω(n) and
clique-width Ω(n). Actually, as shown in (de Melo and
de Oliveira Oliveira 2019), ODDs of constant width can
be used to represent hypercubes of arbitrary size. Be-
sides having unbounded treewidth and clique-width, (Chan-
dran and Kavitha 2006; Bonomo et al. 2016), hypercubes
are not nowhere dense, and therefore these graphs may
have unbounded genus, unbounded local treewidth, un-
bounded expansion, etc. Therefore, techniques developed to
study computational problems on classes of graphs in which
these parameters are bounded (Grohe 2008; Kreutzer 2008;
Grohe 2014) do not apply to our framework either.

2 Preliminaries
We denote by N .

= {0, 1, . . .} the set of natural numbers (in-
cluding zero), and by N+

.
= N \ {0} the set of positive nat-

ural numbers. For each c ∈ N+, we let [c]
.
= {1, 2, . . . , c}

and JcK .
= {0, 1, . . . , c− 1}.

Given a set S and a number a ∈ N+, we let S×a denote
the set of all a-tuples of elements from S. An alphabet is
any finite, non-empty set Σ. A string over an alphabet Σ is
any finite sequence of symbols from Σ. We denote by Σ+

the set of all (non-empty) strings over Σ. A language over
Σ is any subset L of Σ+. In particular, for each k ∈ N+,
we let Σk be the language of all strings of length k over Σ.
If s1, . . . , sa are strings in Σk, where si = σi,1 . . . σi,k for
each i ∈ [a], then the tensor product of s1, . . . , sa is defined
as the string

s1 ⊗ · · · ⊗ sa
.
= (σ1,1, . . . , σa,1) · · · (σk,1, . . . , σk,a)

of length k over the alphabet Σ×a. The tensor product of
strings of length k over the alphabet Σ can be extended to
the tensor product of languages L1, . . . , La ⊆ Σk by setting

L1 ⊗ · · · ⊗ La
.
= {s1 ⊗ · · · ⊗ sa : si ∈ Li for each i ∈ [a]}.

Ordered Decision Diagrams. Let Σ be an alphabet and
w ∈ N+. A (Σ, w)-layer is a tuple B .

= (`, r, T, I, F, ι, φ),
where ` ⊆ JwK is a set of left states, r ⊆ JwK is a set of right
states, T ⊆ `×Σ× r is a set of transitions, I ⊆ ` is a set of
initial states, F ⊆ r is a set of final states and ι, φ ∈ {0, 1}
are Boolean flags satisfying the two following conditions:

1. if ι = 0 then I = ∅;
2. if φ = 0 then F = ∅.

In what follows, we may write `(B), r(B), T (B), I(B),
F (B), ι(B) and φ(B) to refer to the sets `, r, T , I and F
and to the Boolean flags ι and φ, respectively.

We let B(Σ, w) denote the set of all (Σ, w)-layers. Note
that, B(Σ, w) is non-empty and has at most 2O(|Σ|·w2) ele-
ments.

Let k ∈ N+. A (Σ, w)-ordered decision diagram (or sim-
ply, (Σ, w)-ODD) of length k is a string D .

= B1 · · ·Bk ∈
B(Σ, w)k of length k over the alphabet B(Σ, w) satisfying
the following conditions:

1. for each i ∈ [k − 1], `(Bi+1) = r(Bi);

2. ι(B1) = 1 and, for each i ∈ {2, . . . , k}, ι(Bi) = 0;

3. φ(Bk) = 1 and, for each i ∈ [k − 1], φ(Bi) = 0.

We note that Condition 2 guarantees that only the first
layer of an ODD is allowed to have initial states. Analo-
gously, Condition 3 guarantees that only the last layer of an
ODD is allowed to have final states.

For each k ∈ N+, we denote by B(Σ, w)◦k the set of all
(Σ, w)-ODDs of length k.

The width of an ODD D = B1 · · ·Bk ∈ B(Σ, w)◦k is
defined as

w(D)
.
= max{|`(B1)|, . . . , |`(Bk)|, |r(Bk)|}.

We remark that w(D) ≤ w.
Let D = B1 · · ·Bk ∈ B(Σ, w)◦k and s = σ1 · · ·σk ∈

Σk. A valid sequence for s in D is a sequence of transitions
〈(p1, σ1, q1), . . . , (pk, σk, qk)〉 such that pi+1 = qi for each
i ∈ [k − 1], and (pi, σi, qi) ∈ T (Bi) for each i ∈ [k]. Such
a valid sequence is called accepting for s if, additionally,
p1 ∈ I(B1) and qk ∈ F (Bk). We say that D accepts s if
there exists an accepting sequence for s in D. The language
of D, denoted by L(D), is defined as the set of all strings
accepted byD, i.e. L(D)

.
=
{
s ∈ Σk : s is accepted by D

}
.

A (Σ, w)-layer B is called deterministic if the following
conditions are satisfied:

1. for each p ∈ `(B) and each σ ∈ Σ, there exists at most
one right state q ∈ r(B) such that (p, σ, q) ∈ T (B);

2. if ι(B) = 1, then I(B) = `(B) and |`(B)| = 1.

On the other hand, a (Σ, w)-layerB is called complete if, for
each p ∈ `(B) and each σ ∈ Σ, there exists at least one right
state q ∈ r(B) such that (p, σ, q) ∈ T (B). We let B̂(Σ, w)
be the subset of B(Σ, w) comprising all deterministic, com-
plete (Σ, w)-layers.

An ODD D = B1 · · ·Bk ∈ B(Σ, w)◦k is called deter-
ministic (complete, resp.) if, for each i ∈ [k], Bi is a de-
terministic (complete, resp.) layer. We remark that, if D is
deterministic, then there exists at most one valid sequence
in D for each string in Σk. On the other hand, if D is com-
plete, then there exists at least one valid sequence in D for
each string in Σk. For each k ∈ N+, we let B̂(Σ, w)◦k be the
subset of B(Σ, w)◦k comprising all deterministic, complete
(Σ, w)-ODDs of length k.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

50

3 A Symbolic Representation of Constraint
Graphs

Let Σ be an alphabet, and k be a positive integer. A (Σ, k)-
syntactic constraint satisfaction problem, or (Σ, k)-syntactic
CSP for short, is a pair C = (G,λ) where G is a graph
with vertex set V (G) ⊆ Σk, and λ is a function that maps
each edge (u, v) ∈ E(G) to a set λ(u, v) ⊆ Σk × Σk. An
assignment for C is a function α : V (G) → Σk that maps
each vertex v ∈ V (G) to a string α(v) ∈ Σk. We say that
such an assignment α is a solution for C if for each edge
(u, v) ∈ E(G), the pair (α(u), α(v)) belongs to λ(u, v).

Let C = (G,λ) be a (Σ, k)-CSP, for some alphabet Σ and
some k ∈ N. We represent C as a language L(C) ⊆ (Σ×4)k,
called the language of C, which is defined as follows.

L(C) .
= {u⊗ v ⊗ a⊗ b : (u, v) ∈ E(G), (a, b) ∈ λ(u, v)}.

Similarly, we represent an assignment α : V (G) → Σk

for C as language L(α) ⊆ (Σ×2)k, called the language of α,
which is defined as follows.

L(α)
.
= {v ⊗ α(v) : v ∈ V (G)}.

The width of a (Σ, k)-syntactic CSP C, denoted by w(C),
is defined as the minimum width of an ODD over the alpha-
bet Σ×4 whose language is equal to L(C).

w(C) = min{w ∈ N+ : ∃D ∈ B(Σ×4, w)◦k,L(D) = L(C)}.
Similarly, the width of an assignment α is defined as the

mininum width of an ODD over the alphabet Σ×2 whose
language is equal to L(α).

w(α) = min{w ∈ N+ : ∃D ∈ B(Σ×2, w)◦k,L(D) = L(α)}.
The main result of this work (Theorem 1) states that

the satisfiability problem for syntactic CSPs can be solved
in fixed-parameter linear-time when parameterized by the
width of the input CSP and by the minimum width of a
sought solution.
Theorem 1 (Main Theorem). Let Σ be an alphabet. There
is a computable function fΣ : N × N → N, such that for
each k,w,w′ ∈ N, one can determine in time fΣ(w,w′) · k
whether a given (Σ, k)-syntactic CSP C of width w has a
solution of width w′.

The proof of Theorem 1 is presented in Section 5. Be-
fore that, we introduce in Section 4 some machinery for op-
erating with ODDs at a local level, layer by layer. These
operations are primarily used in Section 5 so as to re-
duce the instances of the satisfiability problem of implicitly-
represented CSPs to particular instances of the directed
reachability problem in DAGs.

4 Local Operations with ODDs
Let Σ1 and Σ2 be two alphabets and g : Σ1 → Σ2 be a map-
ping from Σ1 to Σ2. Such a mapping can be homomorphi-
cally extended to strings over Σ1 by simply setting, for each
k ∈ N+ and each string s = σ1σ2 · · ·σk ∈ Σk

1 ,

g(s)
.
= g(σ1)g(σ2) · · · g(σk).

Furthermore, g can be also extended to languages L ⊆ Σk
1

by setting g(L)
.
= {g(s) : s ∈ L}.

In the other direction, if L ⊆ Σk
2 , then we let

g−1(L)
.
= {s ∈ Σk

1 : g(s) ∈ L}

be the set of strings in Σk
1 that are mapped by g to some

string in L. We call g−1(L) the inverse of L under g.
Let k,w,w′ ∈ N+, D = B1 · · ·Bk ∈ B(Σ1, w)◦k and

D′ = B′1 · · ·B′k ∈ B(Σ2, w
′)◦k. We let

D ⊗D′ .= (B1, B
′
1) · · · (Bk, B

′
k)

be the string over B(Σ1, w)×B(Σ2, w) obtained by pairing
layers of D with layers of D′ position-wise.

In Lemma 2 below we list several statements concerning
the manipulation of ordered decision diagrams. More pre-
cisely, Lemma 2 states that operations such as union, in-
tersection, complementation, tensor products, mapping and
inverse mapping can be realized on ODDs by manipulating
their layers in in a position-wise way, in such a way that lay-
ers in distinct positions are manipulated independently from
each other. We note that all statements in Lemma 2 follow
from well known results from automata theory and from the
theory of ordered-binary decision diagrams. For this reason,
in we omit the proof of this lemma in this extended abstract.
For completeness, the proof can be found in the full version
of the paper.

Lemma 2 (Simulation Lemma). Let Σ1 and Σ2 be two al-
phabets and g : Σ1 → Σ2 be a mapping from Σ1 to Σ2.
There exist mappings

1. f∪ : B(Σ1, w)× B(Σ2, w
′)→ B(Σ1 ∪ Σ2, w + w′);

2. f∩ : B(Σ1, w)× B(Σ2, w
′)→ B(Σ1 ∩ Σ2, w · w′);

3. f⊗ : B(Σ1, w)× B(Σ2, w
′)→ B(Σ1 × Σ2, w · w′);

4. fg : B(Σ1, w)→ B(Σ2, w);

5. f−1
g : B(Σ2, w

′)→ B(Σ1, w
′);

6. fpw : B(Σ1, w)→ B̂(Σ1, 2
w);

7. f̂¬ : B̂(Σ1, w)→ B̂(Σ1, w);

such that, for each k ∈ N+, each D ∈ B(Σ1, w)◦k and each
D′ ∈ B(Σ2, w

′)◦k, the following statements hold:

1. f∪(D,D′) is an ODD in B(Σ1 ∪ Σ2, w + w′)◦k with

L(f∪(D,D′)) = L(D) ∪ L(D′).

2. f∩(D ⊗D′) is an ODD in B(Σ1 ∩ Σ2, w · w′)◦k with

L(f∩(D ⊗D′)) = L(D) ∩ L(D′).

3. f⊗(D ⊗D′) is an ODD in B(Σ1 × Σ2, w · w′)◦k with

L(f⊗(D ⊗D′)) = L(D)⊗ L(D′).

4. fg(D) is an ODD in B(Σ2, w)◦k with

L(fg(D)) = g(L(D)).

5. f−1
g (D′) is an ODD in B(Σ1, w

′)◦k with

L(f−1
g (D′)) = g−1(L(D′)).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

51

6. fpw(D) is a deterministic, complete ODD in B̂(Σ1, 2
w)◦k

with
L(fpw(D)) = L(D).

7. If D is a deterministic, complete ODD, then f̂¬(D) is a
deterministic, complete ODD in B̂(Σ1, w)◦k with

L(f̂¬(D)) = Σk
1 \ L(D).

4.1 Sublayers
Let Σ be an alphabet and w ∈ N+. A layer B′ ∈ B(Σ, w) is
called a sublayer of a layer B ∈ B(Σ, w) if `(B′) ⊆ `(B),
r(B′) ⊆ r(B), T (B′) ⊆ T (B), I(B′) ⊆ I(B), F (B′) ⊆
F (B), ι(B′) = ι(B) and φ(B′) = φ(B).

For each k ∈ N+, we say that an ODD D′ = B′1 · · ·B′k ∈
B(Σ, w)◦k is a sub-ODD of an ODD D = B1 · · ·Bk ∈
B(Σ, w)◦k if, for each i ∈ [k], B′i is a sublayer of Bi. We
remark that if D′ is a sub-ODD of D then L(D′) ⊆ L(D).
The converse does not hold. More precisely, there may exist
subsets of L(D) which are not equal to the language of any
sub-ODD of D. We also note that if D is a deterministic
ODD, then any sub-ODD of D is also deterministic.

Let B be a layer in B(Σ, w) and B′ be a sublayer of B.
We say that B′ is a reachable sublayer of B if the following
additional conditions are satisfied:

1. if ι(B) = 1, then `(B′) = I(B);

2. if p ∈ `(B′) and there exist σ ∈ Σ and q ∈ r(B) such that
(p, σ, q) ∈ T (B), then q ∈ r(B′) and (p, σ, q) ∈ T (B′);

3. if q ∈ r(B′), then there exist σ ∈ Σ and p ∈ `(B′) such
that (p, σ, q) ∈ T (B′);

4. I(B′) = I(B);

5. F (B′) = r(B′) ∩ F (B).

Let k ∈ N+, D = B1 · · ·Bk be an ODD in B(Σ, w)◦k

and D′ = B′1 · · ·B′k be a sub-ODD of D. We say that D′ is
a reachable sub-ODD of D if B′i is a reachable sublayer of
Bi for each i ∈ [k].

From the very definition of reachable sublayers, one can
verify that each layer B ∈ B(Σ, w) has at least one reach-
able sublayer. Analogously, it is easy to see that for each
k ∈ N+ and each ODD D ∈ B(Σ, w)◦k, D has at least
one reachable sub-ODD D′. Lemma 4 below states that this
reachable sub-ODD is actually unique, and that it has the
same language as the original one. A useful consequence
of this fact, which we will explore in the proof of our main
theorem, is that in order to determine whether the language
of D is empty, we just need to determine whether the final
state set of the last layer of D′ is empty.

Let B ∈ B(Σ, w), X ⊆ `(B) and Σ′ ⊆ Σ. We let
N(B,X,Σ′) be the set of all right states ofB that are reach-
able from some left state in X by reading some symbol
in Σ′. More formally, N(B,X,Σ′) is defined as the set
{q ∈ r(B) : ∃ p ∈ X, ∃σ ∈ Σ′, (p, σ, q) ∈ T (B)}.
Lemma 3. Let Σ be an alphabet, w ∈ N+ and B be a layer
in B(Σ, w). If ι(B) = 1, then B has exactly one reachable
sublayer. Otherwise, for each X ⊆ `(B), B has exactly one
reachable sublayer B′ such that `(B′) = X .

Proof. Let B′ be a reachable sublayer of B. By Condi-
tion 2, r(B′) ⊇ N(B, `(B′),Σ). On the other hand, by
Condition 3, r(B′) ⊆ N(B, `(B′),Σ). As a result, we
obtain that r(B′) = N(B, `(B′),Σ). Moreover, one can
verify that T (B′) = {(p, σ, q) ∈ T (B) : p ∈ `(B′), σ ∈
Σ, q ∈ r(B′)}. Finally, we have that I(B′) = I(B),
F (B′) = r(B′) ∩ F (B), ι(B′) = ι(B) and φ(B′) = φ(B).
Thus, if ι(B) = 1, then `(B′) = I(B) by Condition 1,
and consequently B′ is uniquely determined from B. Oth-
erwise, provided that `(B′) = X for some X ⊆ `(B), B′ is
uniquely determined from B and the set X .

Lemma 4. Let Σ be an alphabet and k,w ∈ N+. Every
ODD D = B1 · · ·Bk ∈ B(Σ, w)◦k has exactly one reach-
able sub-ODD D′ = B′1 · · ·B′k. Additionally, L(D′) =
L(D), and L(D) 6= ∅ if and only if F (B′k) 6= ∅.

Proof. Let D′ = B′1 · · ·B′k be a reachable sub-ODD of D.
Since ι(B1) = 1, `(B′1) = I(B1). Moreover, it follows
from the fact that D′ is an ODD that `(B′i+1) = r(B′i) for
each i ∈ [k− 1]. Consequently, we obtain by Lemma 3 that,
for each i ∈ [k], the layer B′i is uniquely determined. There-
fore, D′ = B′1 · · ·B′k is the unique reachable sub-ODD of
D.

Now, we prove that L(D′) = L(D). Since D′ is a
sub-ODD of D, L(D′) ⊆ L(D). Thus, it just remains to
show that L(D′) ⊇ L(D). Let s = σ1 · · ·σk ∈ L(D)
and ζ = 〈(p1, σ1, q1), . . . , (pk, σk, qk)〉 be an accepting se-
quence for s in D. By Condition 1, p1 ∈ I(B′1). As a result,
we have by Condition 2 that, for each i ∈ [k], qi ∈ r(B′i)
and (pi, σi, qi) ∈ T (B′i). Finally, it follows from Condi-
tion 5 that qk ∈ F (B′k). Therefore, ζ is also an accepting
sequence for s in D′, and consequently L(D′) = L(D).

Finally, we prove L(D) 6= ∅ if and only if F (B′k) 6=
∅. Note that, since L(D′) = L(D), L(D) 6= ∅ im-
plies F (B′k) 6= ∅. Thus, it just remains to prove the con-
verse. Suppose that F (B′k) 6= ∅, and let qk ∈ F (B′k).
By Condition 3, there exit σk ∈ Σ and pk ∈ `(B′k) such
that (pk, σk, qk) ∈ T (B′k). Since r(B′k−1) = `(B′k),
pk ∈ r(B′k−1). As a result, it follows from Condition 3
that there exit σk−1 ∈ Σ and pk−1 ∈ `(B′k−1) such that
(pk−1, σk−1, qk−1) ∈ T (B′k−1), where qk−1 = pk. More
generally, one can verify that, for each i ∈ [k], there exit
σi ∈ Σ and pi ∈ `(B′i) such that (pi, σi, qi) ∈ T (B′i),
where qj = pj+1 for each j ∈ [k − 1]. Additionally,
it follows from Condition 1 that, if p1 ∈ `(B′1), then
p1 ∈ I(B′1). Therefore, there exists in D′ an accepting se-
quence ζ = 〈(p1, σ1, q1), . . . , (pk, sk, qk)〉 for some string
s = σ1 · · ·σk ∈ Σk. Since L(D′) = L(D), ζ is also an ac-
cepting sequence for s in D, i.e. s ∈ L(D), which implies
L(D) 6= ∅.

5 Proof of Theorem 1
In this section, we prove the main result of this work, Theo-
rem 1, which states that satisfiability of syntactic CSPs can
be solved in fixed-parameter linear time when parameterized
by the width of the input CSP and by the minimum width of
a prospective solution.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

52

CSPs and Assignments From Languages. Let Σ be an
alphabet k ∈ N+, and L ⊆ (Σ×4)k. We let C(L)

.
=

(GL, λL) be the (Σ, k)-syntactic CSP defined by setting

1. V (GL)
.
= {s : ∃ s′, t, t′ ∈ Σk, s ⊗ s′ ⊗ t ⊗ t′ ∈ L ∨

s′ ⊗ s⊗ t⊗ t′ ∈ L}.
2. E(GL)

.
= {(s, s′) : ∃ t, t′ ∈ Σk, s⊗ s′ ⊗ t⊗ t′ ∈ L}.

3. For each edge (s, s′) ∈ E(GL), λL(s, s′)
.
=

{(t, t′) : s⊗ s′ ⊗ t⊗ t′ ∈ L}.
Now, let S ⊆ (Σ×2)k. We say that S is a functional lan-

guage if for each string s ∈ Σk, there exists at most one
string t ∈ Σk such that s ⊗ t ∈ S. Such a functional
language may be regarded as the encoding of a function
αS : Dom(S)→ Im(S) where

Dom(S)
.
= {s ∈ Σk : ∃ t ∈ Σk, s⊗ t ∈ S},

Im(S)
.
= {t ∈ Σk : ∃ s ∈ Σk, s⊗ t ∈ S},

and for each s ∈ Dom(S), αS(s) = t if and only if s⊗ t ∈
S. Since for each s ∈ Dom(S) there is a unique t such that
s⊗ t ∈ S, the function αS is well defined.

Satisfiability for Languages. Let E : Σ×4 → Σ×2 be the
function that sends each 4-tuple (σ, σ′, τ, τ ′) ∈ Σ×4 to the
pair E(σ, σ′, τ, τ ′)

.
= (σ, σ′). For each k ∈ N+, we extend

this function to strings s⊗ s′ ⊗ t⊗ t′ in (Σ×4)k, by setting
E(s⊗ s′⊗ t⊗ t′) .

= s⊗ s′. Going further, for each k ∈ N+,
we extend E to languages L ⊆ (Σ×4)k, by setting

E(L)
.
= {s⊗ s′ : ∃ t, t′ ∈ Σk, s⊗ s⊗ t⊗ t′ ∈ L}.

Now, let sw : Σ×4 → Σ×4 be the function that sends each
4-tuple (σ, τ, σ′, τ ′) ∈ Σ×4 to the 4-tuple sw(σ, τ, σ′, τ ′)

.
=

(σ, σ′, τ, τ ′). In other words, the function sw swaps the sec-
ond and third entries of each tuple in Σ×4. For each k ∈ N+,
we extend this function to strings s⊗ t⊗ s′ ⊗ t′ ∈ (Σ×4)k,
by setting

sw(s⊗ t⊗ s′ ⊗ t′) .
= s⊗ s′ ⊗ t⊗ t′,

and to languages L ⊆ (Σ×4)k by setting

sw(L)
.
= {s⊗ s′ ⊗ t⊗ t′ : s⊗ t⊗ s′ ⊗ t′ ∈ L}.

Definition 5. Let k ∈ N+, L ⊆ (Σ×4)k and S ⊆ (Σ×2)k.
We say that S is a solution for L if the following conditions
are satisfied:

1. S is a functional language;
2. E(L) ⊆ E(sw(S ⊗ S));
3. sw(S ⊗ S) ∩ E(L)⊗ Σk ⊗ Σk ⊆ L.

Intuitively, Condition 1 requires that S is a legitimate rep-
resentation of a function from Σk to Σk. Condition 2 re-
quires that the function represented by S assigns a value to
both endpoints of each edge of the constraint graph C(L).
Indeed, note that S ⊗ S consists of all strings (s, t, s′, t′) ∈
(Σ×4)k such that both s⊗ t and s′ ⊗ t′ belong to S. Conse-
quently, E(sw(S⊗S)) consists of all strings s⊗s′ ∈ (Σ×2)k

such that both s and s′ belong to Dom(S). Therefore, by
requiring that E(L) ⊆ E(S ⊗ S) we ensure that, for each

edge (s, s′) in the edge set E(GL) of the graph GL of the
k-syntactic CSP C(L) = (GL, λL), both vertices s and s′
belong to the domain of the function αS . Finally, Condi-
tion 3 guarantees that the solution represented by S satisfies
all the constraints specified by L. In other words, if (s, s′)
is an edge of GL, αS(s) = t and αS(s′) = t′, then the
pair (t, t′) belongs to the list λL(s, s′) of possible pairs of
values associated to the edge (s, s′). That is to say, the 4-
tuple (s, s′, t, t′) must belong to L. In view of the discussion
above, we have the following lemma.

Lemma 6. Let k ∈ N+, L ⊆ (Σ×4)k and S ⊆ (Σ×2)k.
Then S is a solution for L if and only if αS is a solution for
the k-syntactic CSP C(L).

Therefore, given an ODD D ∈ B(Σ×4, w)◦k, repre-
senting a k-syntactic CSP C(L(D)), in order to determine
whether C(L(D)) has a solution of width at most w′, it is
enough to search for an ODD D′ ∈ B(Σ×2, w)◦k such that
the language L(D′) is a solution for L(D). Using the tools
for manipulation of ODDs developed in Section 4, we will
reduce this latter problem to the reachability problem in a
suitably defined graph. Before doing so, we will prove some
auxiliary results.

Lemma 7. Let Σ be an alphabet, k,w,w′ ∈ N+, D =
B1 . . . Bk be an ODD in B(Σ, w)◦k and D′ = B′1 . . . B

′
k

be a deterministic, complete ODD in B̂(Σ, w′)◦k. Then
L(D) ⊆ L(D′) if and only if there exists an ODD D′′ =
B′′1 . . . B

′′
k in B(Σ, w · w′)◦k such that

1. for each i ∈ [k], B′′i is a reachable sub-layer of
f∩(Bi, f̂¬(B′i)), and

2. F (B′′k) = ∅.

Proof. Let f̂¬(D′) = f̂¬(B′1) . . . f̂¬(B′k). By Lemma 2.7,
f̂¬(D′) is a deterministic, complete ODD in B̂(Σ, w′)◦k

with language L(f̂¬(D′)) = Σk \ L(D′). Now, let f∩(D⊗
f̂¬(D′)) = f∩(B1, f̂¬(B′1)) . . .f∩(Bk, f̂¬(B′k)). Then, it
follows from Lemma 2.2 that f∩(D ⊗ f̂¬(D′)) is an ODD
in B(Σ, w · w′)◦k with language L(f∩(D ⊗ f̂¬(D′))) =

L(D) ∩ L(f̂¬(D′)) = L(D) ∩ (Σk \ L(D′)). Note that,
L(D) ⊆ L(D′) if and only if L(D) ∩ (Σk \ L(D′)) = ∅.
Thus, L(D) ⊆ L(D′) if and only if L(f∩(D⊗ f̂¬(D′))) =
∅. Therefore, it follows from Lemma 4 that L(D) ⊆ L(D′)
if and only if there exists an ODD D′′ = B′′1 . . . B

′′
k ∈

B(Σ, w · w′)◦k such that for each i ∈ [k], B′′i is a reach-
able sub-layer of f∩(Bi, f̂¬(B′i)), and F (B′′k) = ∅.

Letw ∈ N+ andB be a deterministic layer in B(Σ×2, w).
A functional coloring for B is a pair (ξ, δ) of symmetric1

functions ξ : `(B)× `(B)→ {0, 1} and δ : r(B)× r(B)→
{0, 1}, such that the following conditions are satisfied.

1. If ι(B) = 1 and I(B) = {p}, then ξ(p, p) = 0;

2. for each p ∈ `(B) and each q, q′ ∈ r(B), if there exist
symbols σ, τ, τ ′ ∈ Σ such that τ 6= τ ′ and (p, (σ, τ), q)

1By symmetric, we mean that ξ(p, p′) = ξ(p′, p) for each p ∈
`(B) and δ(q, q′) = δ(q′, q) for each q ∈ r(B).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

53

and (p, (σ, τ ′), q′) are transitions in T (B), then δ(q, q′) =
1;

3. for each p, p′ ∈ `(B), if ξ(p, p′) = 1 and there exist sym-
bols σ, τ, τ ′ ∈ Σ and right states q, q′ ∈ r(B) such that
(p, (σ, τ), q) and (p′, (σ, τ ′), q′) are transitions in T (B),
then δ(q, q′) = 1;

4. if φ(B) = 1, then δ(q, q′) = 0 for each q, q′ ∈ F (B).
We note that in Condition 3, the symbols τ and τ ′ are

not necessarily distinct. Moreover, it is worth noting that
Condition 3 implies that for each p ∈ `(B), if ξ(p, p) = 1
and there exist symbols σ, τ ∈ Σ and right state q ∈ r(B)
such that (p, (σ, τ), q) is a transition in T (B), then δ(q, q) =
1. Indeed, this fact follows simply by restricting Condition 3
to the case in which p = p′, q = q′ and τ = τ ′.

Next, we define the notion of functional coloring for de-
terministic ODDs. This notion will be used to provide a syn-
tactic characterization of ODDs whose language is a func-
tional language.
Definition 8. Let k,w ∈ N+ and D = B1 · · ·Bk be a de-
terministic ODD in B(Σ×2, w)◦k. A functional coloring for
D is a sequence (ξ1, δ1) · · · (ξk, δk) of pairs of functions sat-
isfying the following conditions:
1. for each i ∈ [k], (ξi, δi) is a functional coloring of Bi,

and
2. for each i ∈ [k − 1], δi = ξi+1.

As mentioned above, functional colorings provide us with
a syntactic way of determining whether the language ac-
cepted by an ODD is a functional language. Indeed, the next
lemma states that deterministic ODDs accepting a functional
language are precisely those deterministic ODDs whose
reachable sub-ODD admits a functional coloring.
Lemma 9. Let k,w ∈ N+, D be a deterministic ODD in
B(Σ×2, w)◦k andD′ be the reachable sub-ODD ofD. Then
L(D) is a functional language if and only if D′ admits a
functional coloring.

Proof. Let D be a deterministic ODD in B({0, 1}×2, w)◦k

andD′ = B′1B
′
2 . . . B

′
k be the reachable sub-ODD ofD. We

prove that L(D) is a functional language if and only if its
unique reachable sub-ODD D′ admits a functional coloring.

First, assume that L(D) is a functional language. Let
(ξ1, δ1) . . . (ξk, δk) be the unique sequence of pairs of sym-
metric functions where for each i ∈ [k − 1], δi = ξi+1,
and for each i ∈ [k], ξi : `(B′i) × `(B′i) → {0, 1} and
δi : r(B′i) × r(B′i) → {0, 1} satisfy the following condi-
tions.

1A. If i = 1 and I(B′1) = {p}, then ξ(p, p) = 0.
2A. For each p ∈ `(B′i) and each q, q′ ∈ r(B′i), if there

exist symbols σ, τ, τ ′ ∈ {0, 1} such that τ 6= τ ′ and
(p, (σ, τ), q) and (p, (σ, τ ′), q′) are transitions in T (B′i),
then set δi(q, q′) = 1.

3A. For each p, p′ ∈ `(B′i), if ξi(p, p′) = 1 and there exist
symbols σ, τ, τ ′ ∈ {0, 1} and right states q, q′ ∈ r(B′i)
such that (p, (σ, τ), q) and (p′, (σ, τ ′), q′) are transitions
in T (B′i), then set δi(q, q′) = 1.

4A. For each q, q′ ∈ r(B′i), if δi(q, q′) has not been defined in
any of the above cases, then set δi(q, q′) = 0.

Note that Conditions 1A-3A above are just restatements
of Conditions 1-3 of the definition of functional coloring.
We claim that the sequence (ξ1, δ1) · · · (ξk, δk) is a func-
tional coloring of D′. For the sake of contradiction, assume
that this is not the case. Then the only condition that can
fail is Condition 4 of the definition of functional coloring.
In other words, there exist final states q̂k, q̂′k ∈ F (B′k) such
that δk(q̂k, q̂

′
k) = 1. This implies that, for some j ∈ [k], the

following statements hold.

• There exist pj ∈ `(B′j) and σj , τj , τ
′
j ∈ {0, 1}, with

τj 6= τ ′j , such that (pj , (σj , τj), qj) and (pj , (σj , τ
′
j), q

′
j)

are transitions in T (B′j), where qj , q
′
j ∈ r(B′j).

• For each i ∈ {j + 1, . . . , k}, there exist transitions
(pi, (σi, τi), qi) and (pi, (σi, τ

′
i), q

′
i) in T (B′i) such that

pi = qi−1, and qk = q̂k and q′k = q̂′k.

Furthermore, since D′ is the reachable sub-ODD of
D, which is deterministic, there exists a sequence
〈(p1, (σ1, τ1), q1), . . . , (pj−1, (σj−1, τj−1), qj−1)〉 of tran-
sitions in D such that p1 ∈ I(B′1) and, for each i ∈ [j − 1],
qi = pi+1 and (pi, (σi, τi), qi) ∈ T (B′i), otherwise pj 6∈
`(B′j). As a result, we obtain that

〈(p1, (σ1, τ1), q1), . . . , (pj , (σj , τj), qj),

(pj+1, (σj+1, τj+1), qj+1), . . . , (pk, (σk, τk), qk)〉

and

〈(p1, (σ1, τ1), q1), . . . , (pj , (σj , τ
′
j), qj),

(p′j+1, (σj+1, τ
′
j+1), q′j+1), . . . , (p′k, (σk, τ

′
k), q′k)〉

are accepting sequences in D. Moreover, since τj 6= τ ′j ,
these sequences are necessarily distinct. Therefore, there ex-
ist strings s, t, t′ ∈ {0, 1}k such that t 6= t′ and s⊗t, s⊗t′ ∈
L(D). Indeed, consider s = σ1 · · ·σk, t = τ1 · · · τk and
t′ = τ ′1 · · · τ ′k. However, this contradicts the assumption that
L(D) is a functional language. As a consequence, we must
conclude that (ξ1, δ1) . . . (ξk, δk) is a functional coloring of
D′.

For the converse, let (ξ1, δ1) · · · (ξk, δk) be a functional
coloring of D′. For the sake of contradiction, suppose that
L(D) = L(D′) is not a functional language. Then, there
exist strings s, t, t′ ∈ Σk such that t 6= t and s⊗ t, s⊗ t′ ∈
L(D). Assume that s = σ1 · · ·σk, t = τ1 · · · τk and
t′ = τ ′1 · · · τ ′k. Let j be the least integer in [k] such that
τj 6= τ ′j , and let 〈(p1, (σ1, τ1), q1), . . . , (pk, (σk, τk), qk)〉
and 〈(p′1, (σ1, τ

′
1), q′1), . . . , (p′k, (σk, τ

′
k), q′k)〉 be the accept-

ing sequences for s⊗t and s⊗t′ inD, respectively. SinceD
is deterministic, these sequences are well defined. Further-
more, these sequences are also accepting sequences for s⊗ t
and s⊗t′ inD′, respectively, which implies qk, q′k ∈ F (B′k).
Moreover, by the minimality of j, pi = p′i for each i ∈ [j].
In particular, pj = p′j . Thus, since τj 6= τ ′j , it follows from
Condition 2 of the definition of functional coloring for lay-
ers that δj(qj , q′j) = 1. Consequently, ξj+1(pj+1, p

′
j+1) =

δj(qj , q
′
j) = 1 and, by Condition 3, δj+1(qj+1, q

′
j+1) = 1.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

54

More generally, one can verify that, for each i ∈ {j, . . . , k},
δi(qi, q

′
i) = 1. Therefore, δk(qk, q

′
k) = 1. However,

this contradicts the assumption that (ξ1, δ1) · · · (ξk, δk) is a
functional coloring of D′. Therefore, we must conclude that
L(D) is a functional language.

We let fE and fsw be instantiations of the operator fg

from Lemma 2 when g is set to the maps E : Σ×4 → Σ×2

and sw : Σ×4 → Σ×4, respectively. Analogously, we let
f−1
E be the instantiation of the operator f−1

g from Lemma
2 when g is set to E . We note that, if S ⊆ (Σ×2)k, then
f−1
E (S) = S ⊗ Σk ⊗ Σk.
For each B ∈ B(Σ×4, w) and each B′ ∈ B(Σ×2, w′),

we letX0(B′) andX(B,B′) be the layers over the alphabet
Σ×2 defined as follows:

X0(B′) = fE(fsw(f⊗(B′, B′))),

and

X(B,B′)
.
= f∩(fE(B), f̂¬(fpw(X0(B′)))).

We also let Y0(B,B′) and Y (B,B′) be the layers over
the alphabet Σ×4 defined as follows:

Y0(B,B′)
.
= f∩(fsw(f⊗(B′, B′)),f−1

E (fE(B)))

and

Y (B,B′)
.
= f∩(Y0(B,B′),f¬(fpw(B))).

We remark that, by Lemma 2, the width of the layer
X(B,B′) is at most w · 2(w′)2 and the width of the layer
Y (B,B′) is at most w · (w′)2 · 2w.

Lemma 10. Let k,w,w′ ∈ N+, D = B1 · · ·Bk be an
ODD in B(Σ×4, w)◦k and D′ = B′1 · · ·B′k be an ODD in
B(Σ×2, w′)◦k. Then L(D′) is a solution for L(D) if and
only if the reachable sub-ODD of fpw(D′) admits a func-
tional coloring, and there exist ODDs

– D1 = B1
1 · · ·B1

k ∈ B(Σ×2, w · 2(w′)2)◦k and
– D2 = B2

1 · · ·B2
k ∈ B(Σ×4, w · (w′)2 · 2w)◦k,

satisfying the following conditions:

1. for each i ∈ [k],B1
i is a reachable sublayer ofX(Bi, B

′
i),

and F (B1
k) = ∅;

2. for each i ∈ [k],B2
i is a reachable sublayer of Y (Bi, B

′
i),

and F (B2
k) = ∅.

Proof. By Lemma 2, fpw(D′) = fpw(B′1) · · ·fpw(B′k) is
a deterministic, complete ODD with language L(D′) =
L(fpw(D′)). Furthermore, it follows from Lemma 9 that
L(D′) is a functional language if and only if the reachable
sub-ODD of fpw(D′) admits a functional coloring.

Now, by combining Lemma 2 with Lemma 7, we have
that the inclusion

E(L(D)) ⊆ E(sw(L(D′)⊗ L(D′))) (1)

holds if and only if Condition 1 is satisfied.

Similarly, by combining Lemma 2 with Lemma 7, we
have that the inclusion

sw(L(D′)⊗L(D′)) ∩ E(L(D))⊗Σk⊗Σk ⊆ L(D), (2)

holds if and only if Condition 2 is satisfied. Finally, by Def-
inition 5, L(D′) is a solution for L(D) if and only if L(D′)
is a functional language and the inclusions described in (1)
and (2) are satisfied.

Now, we are finally in a position to prove our main result
(Theorem 1).

Proof of Theorem 1. Let k,w,w′ ∈ N+ and D ∈
B(Σ×4, w)◦k be an ODD of length k over the alphabet Σ×4.
We will show that one can determine in time fΣ(w,w′) · k,
for some computable function fΣ, whether the k-syntactic
CSP C(L(D)) defined by D has a solution of width at most
w′. Additionally, our algorithm constructs such a solution in
case it exists.

In order to prove our result, we will show how to reduce
the problem of searching for a solution of width at most w′
to the reachability problem on a suitably constructed graph.
Let U be the directed graph defined as follows. The vertex
set of U is constituted by all tuples of the form[

i, B′i, B
1
i , B

2
i , ξi, δi

]
,

where
1. B′i ∈ B(Σ⊗2, w′),
2. (ξi, δi) is a functional coloring of a reachable sub-layer of

fpw(B′i),

3. B1
i is a reachable sub-layer of X(Bi, B

′
i) with F (B1

i) =
∅,

4. B2
i is a reachable sub-layer of Y (Bi, B

′
i) with F (B2

i) =
∅,

5. ι(B′i) = ι(B1
i) = ι(B2

i) = 1 if i = 1, and
6. φ(B′i) = φ(B1

i) = φ(B2
i) = 1 if i = k.

And, the edge set of U is constituted by all ordered pairs
of vertices of the form([
i, B′i, B

1
i , B

2
i , ξi, δi

]
,
[
i+1, B′i+1, B

1
i+1, B

2
i+1, ξi+1, δi+1

])
such that i ∈ [k − 1], r(B′i) = `(B′i+1), r(B1

i) = `(B1
i+1),

r(B2
i) = `(B2

i+1), and δi = ξi+1. Then, one can verify that
a sequence of vertices of the form[

1, B′1, B
1
1 , B

2
1 , ξ1, δ1

]
, . . . ,

[
k,B′k, B

1
k, B

2
k, ξk, δk

]
(3)

is a path in U if and only if the following statements hold:
1. D′ = B′1 · · ·B′k is an ODD in B(Σ×2, w′)◦k;
2. (ξ1, δ1) · · · (ξk, δk) is a functional coloring of the (unique)

reachable sub-ODD of fpw(D′);

3. D1 = B1
1 . . . B

1
k is an ODD in B(Σ×2, w · 2(w′)2) such

that F (B1
k) = ∅ and, for each i ∈ [k], B1

i is a reachable
sublayer of X(Bi, B

′
i);

4. D2 = B2
1 . . . B

2
k is an ODD in B(Σ×4, w ·(w′)2 ·2w) such

that F (B2
k) = ∅ and, for each i ∈ [k], B2

i is a reachable
sublayer of Y (Bi, B

′
i).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

55

Therefore, we obtain by Lemma 10 that a path as de-
scribed in (3) exists if and only if L(D′) is a solution for
L(D).

Now, we estimate the running time of our algorithm. First,
we note that there are at most 2O(|Σ|·(w′)2) distinct possible
configurations for the layerB′. Furthermore, since the width
of B′ is upped bounded by w′, there are at most 2O(w′) dis-
tinct reachable sub-layers of fpw(B′), and there are at most

2O(2w′
) distinct functional colorings for each reachable sub-

layer of fpw(B′). Since the width of X(B,B′) is at most

w · 2(w′)2 , we obtain that X(B,B′) has at most 2O(w·2(w′)2)

distinct reachable sub-layers. Analogously, it follows from
the fact that the width of Y (B,B′) is at most w · (w′)2 · 2w
that Y (B,B′) has at most 2O(w·(w′)2·2w) distinct reachable
sub-layers. This implies that the number of vertices of U
is upper bounded by k · 2O(|Σ|·w·(w′)2·2w+w2(w′)2). Since
the vertex set of U is split into levels, and each level has at
most 2O(|Σ|·w·(w′)2·2w+w2(w′)2) vertices, one can determine
in time k · 2O(|Σ|·w·(w′)2·2w+w2(w′)2) if there exists a path
from a vertex in the first level to a vertex in the last level
of U . In case such path exists, we can construct it in the
same amount of time. Finally, in this case, the sought ODD
D′ = B′1 · · ·B′k is uniquely determined and can be read
right away from the constructed path. �

6 Satisfiability of Constant Width CSPs is
PSPACE-Hard

In this section, we show that satisfiability of symbolic CSPs
is already PSPACE-hard for CSPs of constant width. For
such CSPs the complexity of satisfiability is directly corre-
lated with the complexity of a witness. Interestingly, for
such CSPs, our main result immediately gives rise to an al-
gorithm that determines the existence of solutions of with
at most w in time f(w) · n where f : N → N is a suit-
able computable function and n is the size of the input CSP.
More precisely, the following theorem is the main result of
this section.

Theorem 11. There exist constants c, w ∈ N such that the
following problem is PSPACE-hard. The input consists of
a (JcK, n)-syntactic CSP C of width w for some n ∈ N. The
goal is to determine whether C is satisfiable.

We dedicate the remainder of this section to the proof of
Theorem 11. Let c ∈ N, and let V,H ⊆ JcK× JcK be binary
relations over JcK. An m × n (c,V,H)-matrix is a matrix
M ∈ JcKm×n such that

1. (Mi,j ,Mi+1,j) ∈ V for each (i, j) ∈ [m− 1]× [n], and

2. (Mi,j ,Mi,j+1) ∈ H for each (i, j) ∈ [m]× [n− 1].

Intuitively, each pair of vertically consecutive entries of
M belong to V and each pair of horizontally consecutive
entries of M belong to H. Now, consider the following
reachability problem.

Problem Name: (c,V,H)-REACHABILITY
Input: A pair of strings (s, t) where s, t ∈ [c]k.
Question: Is there some (c,V,H)-matrixM whose first row
is equal to s and whose last row is equal to t?

It can be shown that there are fixed c ∈ N, and rela-
tions V,H ∈ JcK × JcK for which the (c,V,H)-reachability
problem is PSPACE-complete. Indeed, the configura-
tion reachability problems for 1-dimensional cellular au-
tomata, and for nondeterministic linear-space Turing ma-
chines, which are known to be PSPACE-complete prob-
lems under polynomial time reductions, can be reduced to
(c,V,H)-REACHABILITY for suitable c, V andH which de-
pend only on the cellular automaton or Turing machine in
question, but not on the input configurations.
Proposition 12. There exists some c ∈ N and some V,H ⊆
JcK × JcK such that (c,V,H)-REACHABILITY is PSPACE-
complete.

Below, we will show how to reduce (c,V,H)-
REACHABILITY to satisfiability of syntactic CSPs of con-
stant width. This shows that the latter problem is PSPACE-
hard.

Let n ∈ N. For each i ∈ JcnK, we let bcn(i) denote the
base-c representation of the number iwith n digits. For each
j ∈ [n], we let un(j) = 0j−110n−j be the binary string that
has 1 at the j-th position and 0 everywhere else. For each
i ∈ JcnK and each j ∈ [c] we let ρ[i, j] = bcn(i) � un(j) be
the string representation of the pair (i, j).

Consider the ([2c], n)-syntactic CSP C(c,V,H, s, t) =
(G,λ) defined as follows. We set V (G) = {ρ[i, j] : i ∈
JcnK, j ∈ [n]}. and

E(G) = {(ρ[i, j], ρ[i+ 1, j]) : i ∈ Jcn − 1K, j ∈ [n]} ∪
{(ρ[i, j], ρ[i, j + 1]) : i ∈ JcnK, j ∈ [n− 1]}.

For each number a ∈ JcK, we let τ(a) = an be the string
of length n where all entries are equal to a. Below, we let

Ṽ = {(τ(a), τ(b)) : (a, b) ∈ V}.
For each (i, j) ∈ Jcn − 1K× [n], we let

λ(ρ[i, j], ρ[i+ 1, j]) = Ṽ ∪ {(τ(a), τ(b+ c)) : (a, b) ∈ V}
∪ {(τ(b+ c), τ(b+ c)) : b ∈ JcK}.

(4)
Below, we let H̃ = {(τ(a), τ(b)) : (a, b) ∈ H} and

H = {(τ(a + c), τ(b + c)) : (a, b) ∈ H}. For each
(i, j) ∈ JcnK× [n− 1], we let

λ(ρ[i, j], ρ[i, j + 1]) =

 {(τ(sj), τ(sj+1))} ∩ H̃ if i = 0,

H̃ ∪ {(τ(tj + c), τ(tj+1 + c))} if 1 ≤ i ≤ cn − 2,
{(τ(tj + c), τ(tj+1 + c))} ∩ H if i = cn − 1.

(5)
Intuitively, the graph G of the CSP is (isomorphic to) a

cn×n grid whose vertices are indexed by numbers in JcnK×

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

56

[n]. A solution for the CSP is a labeling of vertices of this
graph with strings from the set {τ(a) : a ∈ J2cK} in such
a way that Conditions (4) and (6) are satisfied. For each a ∈
JcK, the string τ(a+ c) should be considered as a ”marked”
copy of the string τ(a). Condition 4 states that for each pair
of vertically consecutive vertices (i, j) and (i + 1, j), if a
solution for the CSP labels the vertex (i, j) with the string
τ(a) for some a ∈ JcK, then there is some b ∈ JcK, such that
(τ(a), τ(b)) ∈ V and (i+ 1, j) is either labeled with τ(b) or
with its marked version τ(b+ c). On the other hand, if (i, j)
is labeled with τ(b + c), for some b ∈ JcK, then (i + 1, j)
should also be labeled with τ(b + c). As a consequence, in
a valid solution, if a vertex (i, j) is labeled with τ(b + c),
then all vertices vertically below (i, j) are also labeled with
τ(b + c). Now, Condition (6) guarantees that for each j in
[c], the label of vertex (0, j) is equal to τ(sj) and the label
of vertex (cn − 1, j) is equal to τ(tj + c). Additionally,
for each i ∈ {1, . . . , cn − 2}, and each j ∈ [n − 1], either
(i, j) is labeled with τ(a) and (i, j+ 1) is labeled with τ(b),
for some (a, b) ∈ H, or (i, j) is labeled with τ(tj + c) and
(i, j + 1) is labeled with τ(tj+1 + c). This, in particular,
guarantees that if a position (i, j) is labeled with τ(b + c)
for some b ∈ JcK, then for each j′ ∈ [n], (i, j′) is labeled
with τ(tj).

From the above discussion, we have the following claim.
Claim 13. Let c ∈ N, and let V,H ⊆ JcK × JcK, and
s, t ∈ JcKn. Then (s, t) is an YES instance of (c,V,H)-
REACHABILITY if and only if the (2c, n)-syntactic CSP
C(c,V,H, s, t) is satisfiable.

In view of Proposition 12 and of Claim 13, proving The-
orem 11 amounts to showing that for some constant w, the
language there is an ODD D(c,V,H, s, t) ∈ B(Σ×4, w)◦n

accepting the language L(C(c,V,H, s, t)). The construction
of this ODD follows from the following sequence of state-
ments, each of which can be proved using standard tech-
niques for the manipulation of ODDs, together with Lemma
2.
Proposition 14. Let c ∈ N, and V ⊆ JcK× JcK.

1. There exists a constant w1 ∈ N (depending on V) such
that for each n ∈ N, there exists an ODD D1 ∈
B(JcK×4, w1)◦n with
L(D1) = {ρ[i, j]⊗ ρ[i+ 1, j]⊗ τ(a)⊗ τ(b) :

i ∈ Jcn − 1K, j ∈ [n], and (a, b) ∈ V}.
2. There exists a constant w2 ∈ N (depending on V) such

that for each n ∈ N, there exists an ODD D2 ∈
B(JcK×4, w2)◦n with
L(D2) = {ρ[i, j]⊗ ρ[i+ 1, j]⊗ τ(a)⊗ τ(b+ c) :

i ∈ Jcn − 1K, j ∈ [n], and (a, b) ∈ V}.
3. There exists a constant w3 (depending on c) such that for

each n ∈ N, there exists an ODD D3 ∈ B(JcK×4, w2)◦n

such that
L(D3) = {ρ[i, j]⊗ ρ[i+ 1, j]⊗ τ(b+ c)⊗ τ(b+ c) :

i ∈ Jcn − 1K, j ∈ [n], and b ∈ JcK}.
We note that the languageL(D1)∪L(D2)∪L(D3) encode

all vertical constraints defined in Equation 4. The follow-
ing proposition takes care of encodings of horizontal con-
straints.

Proposition 15. Let c ∈ N, andH ⊆ JcK× JcK.
1. There exists a constant w4 ∈ N (depending on H)

such that for each n ∈ N, there exists an ODD D4 ∈
B(JcK×4, w4)◦n with

L(D4) = {ρ[i, j]⊗ ρ[i, j + 1]⊗ τ(a)⊗ τ(b) :
i ∈ Jcn − 2K, j ∈ [n− 1], and (a, b) ∈ H}.

2. There exists a constant w5 ∈ N (depending on H) such
that for each n ∈ N, and each string s ∈ JcKn, there
exists an ODD D5(s) ∈ B(JcK×4, w5)◦n with

L(D5(s)) = {ρ[0, j]⊗ ρ[0, j + 1]⊗ τ(sj)⊗ τ(sj+1) :
j ∈ [n− 1], and (sj , sj+1) ∈ H}.

3. There exists a constant w6 ∈ N (depending on H) such
that for each n ∈ N, and each string t ∈ JcKn, there exists
an ODD D6(t) ∈ B(JcK×4, w6)◦n with

L(D6(t)) = {ρ[i, j]⊗ ρ[i, j + 1]⊗ τ(tj + c)⊗ τ(tj+1 + c) :
i ∈ [cn], j ∈ [n− 1], and (tj , tj+1) ∈ H}.

Now, we have that

L(D(c,V,H, s, t)) = L(D1(s)) ∪ L(D2(s)) ∪ L(D3(s))
∪ L(D4(s)) ∪ L(D5(s)) ∪ L(D6(t)).

Therefore, by Lemma 2, one can assume that the width of
D(c,V,H, s, t)) is at most w1 +w2 +w3 +w4 +w5 +w6.
This completes the proof of Theorem 11 �.

7 Conclusion
In this work, we have introduced a new symbolic approach
for the study of constraint satisfaction problems. Intuitively,
in our approach we use ordered decision diagrams to repre-
sent both CSP instances and prospective solutions for these
instances. In our main result, we showed that the problem of
determining whether a (Σ, k)-syntactic CSP of width w has
a solution of width w′ can be solved in time fΣ(w,w′) · k.
Additionally, we have shown that CSPs of constant width
are PSPACE-hard. On the other hand, our main result in-
dicates that the complexity of the satisfiability problem for
such PSPACE-hard CSPs of constant width is directly corre-
lated with the complexity of a prospective solution. In par-
ticular, in this case, our main result immediately implies the
existence of an algorithm running in time gΣ(w′) · k, where
w′ is the minimum width of a solution for the CSP in ques-
tion.

Given that the satisfiability problem for CSPs specified
by ODDs of constant width is PSPACE-hard, our main re-
sult can be used to provide a parameterized attack to each
problem in PSPACE. More precisely, for each such problem
X there is some constant cX and a polynomial-time com-
putable map M from instances of X to ODDs of width at
most cX such that for each instance I , we have that I is a
YES instance of X if and only if the CSP encoded by the
ODD M(I) has a solution. Note that the length of the ODD
M(I) is at most nO(1), where n is the size of the input in-
stance I . Therefore, using our main result, we have that
the problem of determining whether M(I) has a solution of
width at most w can be solved in time fX(w) · nO(1) for a
suitable computable function fX .

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

57

Acknowledgements
Alexsander Andrade de Melo acknowledges support from
the Brazilian agencies CNPq/GD 140399/2017-8 and
CAPES/PDSE 88881.187636/2018-01.

Mateus de Oliveira Oliveira acknowledges support from
the Bergen Research Foundation and from the Research
Council of Norway (Grant Nr. 288761).

References
Alekhnovich, M., and Razborov, A. A. 2002. Satisfiability,
branch-width and tseitin tautologies. In Proc. of the 43rd
Symposium on Foundations of Computer Science, 593–603.
Allender, E.; Chen, S.; Lou, T.; Papakonstantinou, P. A.;
and Tang, B. 2014. Width-parametrized SAT: Time–space
tradeoffs. Theory of Computing 10(12):297–339.
Balabanov, V.; Widl, M.; and Jiang, J.-H. R. 2014. Qbf
resolution systems and their proof complexities. In Interna-
tional Conference on Theory and Applications of Satisfiabil-
ity Testing, 154–169. Springer.
Bollig, B. 2012. On symbolic obdd-based algorithms for
the minimum spanning tree problem. Theoretical Computer
Science 447:2–12.
Bollig, B. 2014. On the width of ordered binary decision di-
agrams. In International Conference on Combinatorial Op-
timization and Applications, 444–458. Springer.
Bonomo, F.; Grippo, L. N.; Milanič, M.; and Safe, M. D.
2016. Graph classes with and without powers of bounded
clique-width. Discrete Applied Mathematics 199:3–15.
Chandran, L. S., and Kavitha, T. 2006. The treewidth
and pathwidth of hypercubes. Discrete Mathematics
306(3):359–365.
Courcelle, B.; Makowsky, J. A.; and Rotics, U. 2000. Linear
time solvable optimization problems on graphs of bounded
clique-width. Th. of Comp. Syst. 33(2):125–150.
Courcelle, B. 1990. The monadic second-order logic of
graphs I. Recognizable sets of finite graphs. Information
and computation 85(1):12–75.
Cygan, M.; Fomin, F. V.; Kowalik, Ł.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized algorithms, volume 4. Springer.
de Melo, A. A., and de Oliveira Oliveira, M. 2019. On the
width of regular classes of finite structures. In Automated
Deduction - CADE 27 - 27th International Conference on
Automated Deduction, Natal, Brazil, August 27-30, 2019,
Proceedings, volume 11716 of Lecture Notes in Computer
Science, 18–34. Springer.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. Springer.
Grohe, M. 2008. Algorithmic meta theorems. In Interna-
tional Workshop on Graph-Theoretic Concepts in Computer
Science, 30–30. Springer.
Grohe, M. 2014. Algorithmic meta theorems for sparse
graph classes. In International Computer Science Sympo-
sium in Russia, 16–22. Springer.

Hachtel, G. D., and Somenzi, F. 1993. A symbolic algo-
rithm for maximum flow in 0-1 networks. In Proceedings of
the 1993 IEEE/ACM international conference on Computer-
aided design, 403–406. IEEE Computer Society Press.
Kreutzer, S. 2008. Algorithmic meta-theorems. In Interna-
tional Workshop on Parameterized and Exact Computation,
10–12. Springer.
Narizzano, M.; Peschiera, C.; Pulina, L.; and Tacchella, A.
2009. Evaluating and certifying qbfs: A comparison of state-
of-the-art tools. AI Commun. 22(4):191–210.
Sawitzki, D. 2004. Implicit flow maximization by it-
erative squaring. In International Conference on Current
Trends in Theory and Practice of Computer Science, 301–
313. Springer.
Woelfel, P. 2006. Symbolic topological sorting with obdds.
Journal of Discrete Algorithms 4(1):51–71.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

58

	Introduction
	Preliminaries
	A Symbolic Representation of Constraint Graphs
	Local Operations with ODDs
	Sublayers

	Proof of Theorem 1
	Satisfiability of Constant Width CSPs is PSPACE-Hard
	Conclusion

