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Abstract
Syntax splitting, first introduced by Parikh in 1999, is a nat-
ural and desirable property of KR systems. Syntax split-
ting combines two aspects: it requires that the outcome of
a certain epistemic operation should only depend on rele-
vant parts of the underlying knowledge base, where rele-
vance is given a syntactic interpretation (relevance). It also
requires that strengthening antecedents by irrelevant infor-
mation should have no influence on the obtained conclusions
(independence). In the context of belief revision the study of
syntax splitting already proved useful and led to numerous
new insights. In this paper we analyse syntax splitting in a
different setting, namely nonmonotonic reasoning based on
conditional knowledge bases. More precisely, we analyse in-
ductive inference operators which, like system P, system Z,
or the more recent c-inference, generate an inference relation
from a conditional knowledge base. We axiomatize the two
aforementioned aspects of syntax splitting, relevance and in-
dependence, as properties of such inductive inference oper-
ators. Our main results show that system P and system Z,
whilst satisfying relevance, fail to satisfy independence. C-
inference, in contrast, turns out to satisfy both relevance and
independence and thus fully complies with syntax splitting.

1 Introduction
Postulates have become standard tools in knowledge repre-
sentation. They limit the range of approaches considered to
be interesting and help us to evaluate and to classify them.
This also applies to nonmonotonic reasoning, where the ax-
iomatics of system P (Adams 1966; Kraus, Lehmann, and
Magidor 1990) has been established as kind of a standard
while system Z (Pearl 1990) is often perceived as a particu-
larly convenient and intuitive method of nonmonotonic rea-
soning. As examples of such postulates which are crucial
to assess the quality of a nonmonotonic inference relation
|∼ , we recall the well-known postulates of Reflexivity, Cau-
tious Monotony (CM), and Cut which form a core of many
axiomatic systems and together are also known as Cumula-
tivity (Makinson 1989) (A,B,C propositional formulas) :
(Reflexivity) A |∼A
(CM) If A |∼B and A |∼C then also A ∧B |∼C
(Cut) If A |∼B and A ∧B |∼C then also A |∼C
We would like to emphasize that these postulates focus en-
tirely on the inference relation. How this relation is obtained

is not addressed at all. This is somewhat surprising, since
both system P and system Z, as well as many other in-
ference systems like, e.g., rational closure (Lehmann and
Magidor 1992), make use of a (conditional) belief base from
which the inference relation is derived. Except for some few
more general works on nonmonotonic reasoning like (Wey-
dert 2003), this belief base does not show up explicitly in
most of the postulates considered so far.

In this paper, we focus not only on (nonmonotonic) in-
ference relations, but also on how they are generated. Con-
sequently, we consider inference relations |∼∆ which are
parameterized by the conditional belief base ∆ they are in-
duced from, i.e., ∆ serves as a starting point for inferences
that extend (like system P) or complete (like system Z and
rational closure) the beliefs in ∆. We call operators that as-
sign inference relations to conditional belief bases inductive
inference operators. We will propose several postulates for
inductive inference operators which shed new light on the
relationships between nonmonotonic inference systems. The
new postulates allow us to point out differences which can-
not be expressed in terms of properties of the induced infer-
ence relations alone. An existing example of the kind of pos-
tulate we have in mind is Direct Inference (DI) (Lukasiewicz
2005). This postulate links conditional beliefs (B|A) ∈ ∆
to nonmonotonic inferences via |∼∆ :

(DI) If ∆ is a conditional belief base and |∼∆ is an infer-
ence relation that is induced on ∆, then (B|A) ∈ ∆ im-
plies A |∼∆B.

In a very fundamental way, (DI) justifies to call |∼∆ an in-
ference relation induced from ∆. For this reason we will take
(DI) as part of the definition of inductive inference operators.
(DI) is satisfied by system Z and rational closure, and also
by inferences via c-representations (Kern-Isberner 2001;
Kern-Isberner 2004). For inductive reasoning, (DI) plays a
role that is similar to the success conditions in belief change
(Gärdenfors and Rott 1994).

Beyond (DI), it is hard to specify exactly what influence
the conditional beliefs in ∆ should have on the inferences
derived from them. However, there are cases in which we
are able to state quite clearly that we do not want to have
interferences: if the belief base splits into two subbases over
disjoint languages, then first, we expect the inferences be-
tween propositions from one sublanguage to be determined
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only by the respective subbase, and second, we do not want
these inferences to be affected by additional information
coming from the other sublanguage. The first property sets
a scope of relevance for inferences, while the second prop-
erty keeps inferences regarding one sublanguage indepen-
dent from propositions over the other sublanguage, if no jus-
tification for a dependence can be found in the belief base.
Briefly stated, if the belief base splits then we also expect
the inferences to be split (over sublanguages). For example,
if one subbase talks about birds (b) usually being able to
fly (f ), i.e., ∆1 = {(f |b)}, and the other expresses beliefs
about dark objects (d) usually being hardly resp. not visible
in the night (¬v), i.e., ∆2 = {(¬v|d)}, then we would ex-
pect that the inferences b |∼ f and d |∼¬v can be drawn (this
is what (DI) ensures). Regarding information coming from
the respective other subbase, we might also expect that they
would not affect these inferences, i.e., we might accept that
dark birds also are able to fly and not visible in the night. Fol-
lowing this line of thought, db |∼ f and db |∼¬v seem to be
reasonable inferences, given (only) ∆1∪∆2. However, such
cases are not covered by standard axioms of nonmonotonic
inference but would require to take the (syntactic) structure
of the belief base explicitly into account. Of course, there are
cases where we deem interferences to be possible and even
expected, but in those cases we would expect to see condi-
tionals in the belief base which somehow link atoms from
one sublanguage to atoms from the other.

We formalize the properties Relevance and Indepen-
dence which together axiomatize the property of Syntax
Splitting for (nonmonotonic) inductive inference relations,
and present semantic counterparts for two popular seman-
tic frameworks on which such inference relations can be
based: total preorders (Makinson 1989), and ordinal condi-
tional functions (OCF, also called ranking functions) (Spohn
1988). For total preorders, we show a representation theo-
rem, while for ranking functions, Relevance and Indepen-
dence can be strengthened into one combined axiom. We
also point out connections to work in belief revision theory,
showing how syntax splitting for inductive inference rela-
tions can be considered as a special case of syntax splitting
properties in belief revision, which have also been addressed
under the name Relevance. Our Independence property ex-
tends notions of irrelevance that have been addressed in vari-
ous places before (e.g., (Benferhat, Dubois, and Prade 2002;
Delgrande and Pelletier 1998)).

The main contributions of this paper are as follows:

• We axiomatize syntax splitting for inductive inference re-
lations from conditional belief bases by the formal prop-
erties of Relevance and Independence.

• We present a representation theorem for inductive infer-
ence relations based on total preorders, and we present
a stronger, more concise definition of syntax splitting for
ranking functions which is downward compatible with the
qualitative notions.

• In particular, we introduce a qualitative notion of inde-
pendence for total preorders, defining when two disjoint
subsets of variables are independent from one another, in
accordance to notions of independence for ranking func-

tions, and probabilities.

• As a byproduct of this last point, we introduce a quali-
tative conditioning operator for total preorders, and char-
acterize qualitative independence in terms of qualitative
conditionalization in a way that is analogous to the corre-
spondence of both concepts in probability theory.

• We introduce the notion of selection strategies for c-
representations and show that they provide inductive in-
ference operators that fully comply with syntax splitting;
furthermore, we show that also skeptical inference over
all c-representations obeys syntax splitting.

The paper is organized as follows. Sect. 2 introduces ba-
sic formal notions. Sect. 3 provides the relevant background
on nonmonotonic inference relations based on conditional
belief bases. Inductive inference operators are defined in
Sect. 4, together with several specializations of this notion.
Sect. 5 introduces our axiomatization of syntax splitting for
inductive inference operators, as composed of relevance and
independence. It studies several fundamental properties of
the axiomatization and analyzes system P and system Z in
the light of the postulates. It turns out that these systems
satisfy relevance, but not independence. Sect. 6 extends the
analysis to c-representations and c-inference and establishes
another main result, namely full satisfaction of syntax split-
ting for c-inference. Relevant related work is discussed in
Sect. 7. Sect. 8 concludes and points to future work.

2 Formal Basics
Let L be a finitely generated propositional language over
an alphabet Σ with atoms a, b, c, . . ., and with formulas
A,B,C, . . .. For conciseness of notation, we will omit the
logical and-connector, writing AB instead of A ∧ B, and
overlining formulas will indicate negation, i.e.Ameans ¬A.
Let Ω denote the set of possible worlds over L; Ω will be
taken here simply as the set of all propositional interpreta-
tions over L. ω |= A means that the propositional formula
A ∈ L holds in the possible world ω ∈ Ω; then ω is called a
model of A, and the set of all models of A is denoted by
Mod (A). For propositions A,B ∈ L, A |= B holds iff
Mod (A) ⊆ Mod (B), as usual. By slight abuse of notation,
we will use ω both for the model and the corresponding con-
junction of all positive or negated atoms. This will allow us
to use ω both as an interpretation and a proposition, which
will ease notation a lot. Since ω |= A means the same for
both readings of ω, no confusion will arise.

For subsets Θ of Σ, let L(Θ) denote the propositional
language defined by Θ, with associated set of interpreta-
tions Ω(Θ). Note that while each sentence of L(Θ) can
also be considered as a sentence of L, the interpretations
ωΘ ∈ Ω(Θ) are not elements of Ω(Σ) if Θ 6= Σ. But each
interpretation ω ∈ Ω can be written uniquely in the form
ω = ωΘωΘ with concatenated ωΘ ∈ Ω(Θ) and ωΘ ∈ Ω(Θ),
where Θ = Σ\Θ is the complement of Θ in Σ. Note that the
syntactical reading of interpretations as conjunctions makes
perfect sense here: According to this reading, ω is a conjunc-
tion of ωΘ and ωΘ (with omitted ∧ symbol). ωΘ is called the
reduct of ω to Θ (Delgrande 2017). If Ω′ ⊆ Ω is a subset of
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models, then Ω′|Θ = {ωΘ|ω ∈ Ω′} ⊆ Ω(Θ) restricts Ω′ to
a subset of Ω(Θ). In the following, we will often consider
the case that Σ1,Σ2 are disjoint subsignatures of Σ, then we
write ωi instead of ωΣi for the reducts to ease notation.

By making use of a conditional operator |, we introduce
the language (L|L) of conditionals over L:

(L|L) = {(B|A) | A,B ∈ L}.

Conditionals (B|A) are meant to express plausible, defeasi-
ble rules “If A then plausibly (usually, possibly, probably,
typically etc.) B”. A popular semantic framework that is
often used for interpreting conditionals is provided by or-
dinal conditional functions. Ordinal conditional functions
(OCFs), (also called ranking functions) κ : Ω → N ∪ {∞}
with κ−1(0) 6= ∅, were introduced (in a more general form)
first by (Spohn 1988). They express degrees of plausibil-
ity of propositional formulas A by specifying degrees of
disbeliefs of their negations A. More formally, we have
κ(A) := min{κ(ω) | ω |= A}, so that κ(A ∨ B) =
min{κ(A), κ(B)}. A proposition A is believed if κ(A) > 0
(which implies particularly κ(A) = 0). The uniform OCF
κu is defined by κu(ω) = 0 for all ω ∈ Ω.

Degrees of plausibility can also be assigned to condition-
als by setting κ(B|A) = κ(AB) − κ(A). A conditional
(B|A) is accepted in the epistemic state represented by κ,
written as κ |= (B|A), iff κ(AB) < κ(AB), i.e. iff AB is
more plausible than AB.

The marginal of κ on Θ ⊆ Σ, denoted by κ|Θ, is defined
by κ|Θ(ωΘ) = κ(ωΘ) for any ωΘ ∈ Ω(Θ). Let Σ1,Σ2

be disjoint subsignatures of Σ, let κ be an OCF. Σ1,Σ2

are κ-independent iff for all ω1 ∈ Ω(Σ1), ω2 ∈ Ω(Σ2),
κ(ω1ω2) = κ(ω1) + κ(ω2) holds, which is the same as
κ|Θ1

(ω1) + κ|Θ2
(ω2). Lemma 1 is straightforward:

Lemma 1. Let Σ1,Σ2 be disjoint subsignatures of Σ, let κ
be an OCF. Then Σ1,Σ2 are κ-independent iff for all A ∈
L(Σ1), B ∈ L(Σ2), κ(AB) = κ(A) + κ(B) holds.

So, Σ1,Σ2 are κ-independent iff all propositions A,B of
the respective different sublanguages are κ-independent in
the sense of (Kern-Isberner and Huvermann 2017).

3 Inference Relations
Nonmonotonic inference relations are relations |∼ between
(sets of) sentences of a given logical language L. System P
(Adams 1966) is a set of axioms that can be used to evaluate
the logical quality of such an inference relation. Besides Re-
flexivity, Cautious Monotony, and Cut mentioned in Sec. 1,
system P encompasses the following three more axioms:

(Left Logical Equivalence) If A ≡ B and A |∼C, then
B |∼C.

(Right Weakening) If A |∼B and B |= C, then A |∼C.

(Or) If A |∼C and B |∼C, then A ∨B |∼C.

On the semantic side, preferential entailment (Makinson
1989) is a well-known form of nonmonotonic inference that
makes use of relations over possible worlds and defines non-
monotonic inferences from A ∈ L via its most preferred

models. For instance, system P can be characterized by pref-
erential models (Makinson 1989). Particularly well-behaved
inference relations arise if total preorders (TPO)� over pos-
sible worlds are used. As usual, ω ≺ ω′ iff ω � ω′ and not
ω′ � ω, and ω ≈Ψ ω′ iff both ω � ω′ and ω′ � ω. The
uniform total preorder �u is defined via ω �u ω′ for all
ω, ω′ ∈ Ω. Such TPOs can be lifted to total preorders on the
set of propositions via A � B iff there is a (minimal) ω ∈
Mod (A) such that ω � ω′ for all ω′ ∈ Mod (B). If Ω′ ⊆ Ω,
then min�(Ω′) = {ω′ ∈ Ω′ |ω′ � ω′′ for all ω′′ ∈ Ω′} de-
notes the set of�-minimal models in Ω′. If Ω′ = Ω, then we
simply write min(�) instead of min�(Ω). If A ∈ L, then
min�(A) = min�(Mod (A)). The agent believes exactly
the propositions that are valid in all most plausible models.

Applying preferential entailment to a preferential model
which is given by a TPO � yields the nonmonotonic infer-
ence relation |∼� which is given by

A |∼�B iff AB ≺ AB. (1)

Conversely, from this we obtain

A ≺ B iff A ∨B |∼�B, (2)

because A ≺ B is equivalent to min{AB,AB} ≺
min{AB,AB}, and this can only hold if AB ≺
min{AB,AB} ≡ B.

Note that all these definitions depend crucially on the
given language, i.e., if the logical language changes, the for-
mat of (inferred) beliefs will change, too. Similar to OCFs,
we can also marginalize total preorders and even inference
relations, i.e., restricting them to sublanguages, in a natural
way: If Θ ⊆ Σ then any TPO � on Ω(Σ) induces uniquely
a marginalized TPO �|Θ on Ω(Θ) by setting

ωΘ
1 �|Θ ωΘ

2 iff ωΘ
1 � ωΘ

2 . (3)

Note that on the right hand side of the iff condition above
ωΘ

1 , ω
Θ
2 are considered as propositions in the superlanguage

L(Ω), hence ωΘ
1 �Ψ ωΘ

2 is well defined (Kern-Isberner and
Brewka 2017).

In (Beierle and Kern-Isberner 2012), many different se-
mantics for conditionals logics, including TPOs, OCFs,
probablity distributions, possibility measures, conditional
objects, and variants thereof, are formalized as institutions
(Goguen and Burstall 1992). The marginalization for OCFs
and TPOs presented above are special cases of the gen-
eral forgetful functor Mod(σ) from Σ-models to Σ′-models
given in (Beierle and Kern-Isberner 2012) where Σ′ ⊆ Σ
and σ is the inclusion from Σ′ to Σ.

Similarly, any inference relation |∼ on L(Σ) induces a
marginalized inference relation |∼|Θ on L(Θ) by setting

A |∼|Θ B iff A |∼B (4)

for any A,B ∈ L(Θ). Marginalization helps us to focus on
relevant parts of the language.

Conditionals from (L | L) can be considered to encode
nonmonotonic inferences, briefly by stating that a condi-
tional (B|A) is accepted if A |∼B holds. Roughly, the basic
prerequisite for both statements is that AB is more plau-
sible than AB resp. preferred to AB. This nicely matches
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the intuitive understanding of conditionals. So, we say that
a total preorder � accepts a conditional (B|A), denoted as
� |= (B|A), if AB ≺ AB. Note that also OCFs κ induce
total preorders on Ω via ω1 �κ ω2 iff κ(ω1) 6 κ(ω2), so
everything we state on total preorders will apply to OCFs,
but OCFs allow for more expressive statements because of
their usage of natural numbers and the corresponding arith-
metics. Moreover, the nonmonotonic inference relation |∼κ
induced by �κ is given by (Spohn 1988)

A |∼κB iff κ(AB) < κ(AB) (i.e., iff κ |= (B|A)). (5)

Conditional belief bases ∆ (over L) consist of finitely many
conditionals from (L | L). Consistency of such a conditional
belief base ∆ can be defined in terms of OCFs (Pearl 1990):
∆ is consistent iff there is an OCF κ such that κ |= ∆.

A well-known inference relation that is based on OCFs
and conditional belief bases is system Z (Pearl 1990) which
makes use of a so-called tolerance partition of the condi-
tional belief base ∆. First, a conditional (B|A) is tolerated
by ∆ iff there is a world ω ∈ Ω such that ω |= AB and ω
does not falsify any conditional in ∆. Then, the first parti-
tioning set D0 ⊆ ∆ contains all conditionals from ∆ that
are tolerated by ∆. Recursively, continuing with i = 1, Di
contains all conditionals which are tolerated by ∆\∪j<iDj ,
until all conditionals from ∆ are contained in someDi, or no
tolerated conditional can be found. ∆ is consistent iff such
a so-called Z-partition ∆ = D0 ∪ D1 ∪ . . . ∪ Dm exists
(Pearl 1990). Note that for the unique Z-partition, all Di’s
have to be maximal, so that for a conditional (B|A) ∈ ∆ =
{(B1|A1), . . . , (Bn|An)}, Z∆((B|A)) = j iff (B|A) ∈ Dj
is well-defined. The OCF κz∆ is defined as (Pearl 1990)

κz∆(ω) = max
16i6n

{Z∆((Bi|Ai)) | ω |= AiBi}+ 1, (6)

where max ∅ = −1. The system-Z inference relation |∼z∆ is
then defined by A |∼z∆B iff κz∆(AB) < κz∆(AB).

4 Inductive Reasoning from Belief Bases
We focus on consistent conditional belief bases ∆ ⊂ (L | L)
over a propositional language L (Goldszmidt and Pearl
1996) in this paper and consider (nonmonotonic) inference
relations which are induced by such bases. Our approach and
results can be generalized to cover also the inconsistent case
by slight, suitable extensions of the definitions, but for the
sake of clarity, we will presuppose that all conditional belief
bases are consistent; moreover, we assume that all condi-
tionals (B|A) are non-contradictory, i.e., AB 6≡ ⊥.

We start with the most general case of such inductive in-
ference operators. Besides the (DI) axiom from the introduc-
tion, we will also presuppose that empty belief bases should
not license any non-trivial inferences:
(Trivial Vacuity) If ∆ = ∅, then A |∼B only if A |= B.
Definition 1 (inductive inference operator C). An inductive
inference operator (from conditional belief bases) (on L) is
a mapping C that assigns to each conditional belief base
∆ ⊆ (L | L) an inference relation |∼∆ on L such that (DI)
and (Trivial Vacuity) are satisfied:

C : ∆ 7→ |∼∆ .

Example 1. System P can be defined in terms of inductive
inference from conditional belief bases as follows: Given a
conditional belief base ∆, let |∼P∆ be the minimal inference
relation that satisfies (DI) and is closed under all axioms of
system P. Then the inductive inference operator CP can be
defined via

CP : ∆ 7→ |∼P∆ . (7)
It is clear that CP satisfies both (DI) and (Trivial Vacuity).

Mentioning ∆ explicitly helps checking P-inferences for
consistent belief bases: A |∼P∆B iff ∆ ∪ {(B|A)} is in-
consistent (Adams 1966). A further characterization of P-
inferences can be obtained via OCFs: A |∼P∆B iff κ |= ∆
implies κ |= (B|A) (Goldszmidt and Pearl 1996).

We take up the example from the introduction and extend
it a bit to use it as a running example throughout the paper.
Example 2. Let Σ = {p, b, f, d, v} with the atoms having
the following meaning, respectively: penguins (p), birds (b),
being able to fly (f ), dark objects (d), being visible in the
night (v), and let ∆ = {(f |b), (b|p), (f |p), v|d)}. Then we
have, e.g., pb |∼P∆ f (with (DI) and (CM)), and d |∼P∆ v (with
(DI)). However, no inferences regarding dark birds (bd) can
be drawn, i.e., system P is undecided about their ability to
fly, or whether they are plausibly visible in the night or not.

More well-behaved inference relations are usually ob-
tained by associating one specific model (i.e., a TPO, or an
OCF) to a conditional belief base, and then base inferences
on that model:
Definition 2 (inductive inference operator Ctpo for TPOs).
A model-based inductive inference operator (from condi-
tional belief bases) for total preorders (on Ω) is a mapping
Ctpo that assigns to each conditional belief base ∆ a total
preorder �∆ on Ω such that �∆ |= ∆ and �∅=�u, i.e.,
such that (DI) and (Trivial Vacuity) are ensured:

Ctpo : ∆ 7→�∆ .

The appertaining inference relation |∼�∆
is obtained via

(1), i.e., A |∼�∆
B iff AB ≺∆ AB.

The most expressive TPOs that we consider in this paper
are given by OCFs, so OCFs will also serve as models of
conditional belief bases:
Definition 3 (inductive inference operator Cocf for OCFs).
A model-based inductive inference operator (from condi-
tional belief bases) for OCFs (on L) is a mapping Cocf that
assigns to each conditional belief base ∆ ⊆ (L | L) an OCF
κ∆ onL such that κ∆ |= ∆ and κ∅ = κu, i.e., such that (DI)
and (Trivial Vacuity) are ensured:

Cocf : ∆ 7→ κ∆.

The appertaining inference relation |∼κ∆
is obtained via (5),

i.e., A |∼κ∆
B iff κ(AB) < κ(AB).

Example 3. System Z (6) yields an inductive inference op-
erator based on κz∆ as follows:

Cz : ∆ 7→ κz∆. (8)

Also Cz satisfies both (DI) and (Trivial Vacuity).
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Note that each inductive inference operator Cocf : ∆ 7→
κ∆ for OCFs induces an inductive inference operator

Ctpo : ∆ 7→�κ∆ (9)

for TPOs, i.e., by mapping ∆ to the total preorder �κ∆ in-
duced by κ∆. In an analogous way, each inductive inference
operator Ctpo : ∆ 7→�∆ for TPOs induces an inductive
inference operator C on L by setting

C : ∆ 7→ |∼�∆
. (10)

For the inference relation that we obtain in this way from ∆
via system Z, we write simply |∼z∆ .

We continue our running example with system Z.
Example 4. Let Σ,∆ be as in Example 2. First, we set
up the tolerance partitioning. Since (only) the penguin con-
ditionals are not tolerated by the other conditionals in ∆
but tolerate one another, we obtain D0 = {(f |b), (v|d)}
and D1 = {(b|p), (f |p)}. Therefore, for κz∆, we compute
κz∆(ω) = 2 iff ω |= pb or ω |= pf , and for the rest of the
possible worlds, we have κz∆(ω) = 1 iff ω |= bf or ω |= vd,
i.e., κz∆(ω) = 1 iff ω |= bf ∨ vdp. For all other possible
worlds, we obtain κz∆(ω) = 0. System Z yields all system-
P inferences, and more. In particular, we are now able to
conclude that dark birds fly and are not visible in the night:
bd |∼z∆ f and bd |∼z∆ v because κz∆(bdf) = 0 = κz∆(bdv)

and κz∆(bdf) = 1 = κz∆(bdv), hence both κz∆(bdf) <

κz∆(bdf) and κz∆(bdv) < κz∆(bdv).

5 Syntax Splitting
In the following, we focus on the case that the conditional
belief base ∆ splits into subbases ∆1,∆2 over disjoint sub-
languages, i.e., ∆ = ∆1 ∪∆2, ∆i ⊂ (Li|Li),Li = L(Σi)
for i = 1, 2 such that Σ1∩Σ2 = ∅ and Σ1∪Σ2 = Σ, writing

∆ = ∆1

⋃
Σ1,Σ2

∆2

in this case. In this scenario, for any world ω = ω1ω2 with
ωi ∈ Ω(Σi), i ∈ {1, 2}, and for any A ∈ Li, we have

ω1ω2 |= A iff ωi |= A, (11)

i ∈ {1, 2}. Note that we do not assume the sublanguages Li
to be chosen minimally, i.e., there may be atoms in Li that
are not mentioned in ∆i, and that any of ∆i may be empty.
When only one of ∆1,∆2 is empty, this means that the con-
ditionals in ∆ make use only of atoms of a sublanguage of
L. So, this base case covers the most general case of syn-
tax splitting which can be recursively applied to finer syntax
splittings (in the sense of Parikh (Parikh 1999)).
Example 5. In our Example 2, ∆ = ∆1

⋃
Σ1,Σ2

∆2 with Σ1 =

{p, b, f},Σ2 = {d, v} and ∆1 = {(f |b), (b|p), (f |p)},
∆2 = {(v|d)}. Since pf ∈ L1 = L(Σ1), we have ω =
pbfvd |= pf iff ω1 = pbf |= pf .

We start with considering general inductive inferences. If
an atom of the language does not occur in a belief base at

all, then we would expect the inferences based on that belief
base not to depend on that atom. This can be generalized to
propositions, or even conditionals using only atoms that do
not occur in the belief base, leading in quite a natural way to
the following relevance property:

(Rel) An inductive inference operator C : ∆ 7→ |∼∆ on L
satisfies (Rel) if for any ∆ = ∆1

⋃
Σ1,Σ2

∆2, and for any

A,B ∈ Li (i ∈ {1, 2}),

A |∼∆B iff A |∼∆i B. (12)

This relevance property means that only conditionals from
the respective sublanguage are relevant for inductive infer-
ences, and that conditionals of the respective other subbase
are irrelevant for these inferences. In the paper (Weydert
2003), a corresponding axiom can be found under the name
Strong Irrelevance.

Example 6. Taking up the setting from Example 5, (Rel)
implies pb |∼∆ f iff pb |∼∆1

f . However, (Rel) does not say
anything about dark penguins, pd.

Moreover, we do not want any sentence from the respec-
tive other sublanguage to interfere with inductive inferences
regarding one sublanguage, i.e., such inferences should be
independent from any proposition over the other sublan-
guage:

(Ind) An inductive inference operator C : ∆ 7→ |∼∆ on L
satisfies (Ind) if for any ∆ = ∆1

⋃
Σ1,Σ2

∆2, and for any

A,B ∈ Li, C ∈ Lj (i, j ∈ {1, 2}, j 6= i),

A |∼∆B iff AC |∼∆B. (13)

These two basic properties make up jointly the property of
syntax splitting:

(SynSplit) An inductive inference operator C : ∆ 7→ |∼∆

on L satisfies (SynSplit) if it satisfies (Rel) and (Ind).

We illustrate how (SynSplit) can help to reduce and focus
inference problems.

Example 7. Continuing Example 5, if C : ∆ 7→ |∼∆ sat-
isfies (SynSplit) then we obtain pbd |∼∆ f iff pb |∼∆ f (by
(Ind)), iff pb |∼∆1

f (by (Rel)).

Actually, the (Rel)-property is equivalent to stating that
the inductive inference is compatible with marginalisation:

Proposition 1. An inductive inference operator C satisfies
(Rel) iff for any ∆ = ∆1

⋃
Σ1,Σ2

∆2, C(∆i) = C(∆)|Σi .

The first inductive inference operator that we evaluate
with respect to syntax splitting, is the system P operator CP

defined by (7). Since system P takes into account all ranking
functions accepting ∆, it is easy to find counterexamples to
(Ind) (e.g., see Example 2). Nevertheless, the next proposi-
tion shows that system P satisfies (Rel):

Proposition 2. CP satisfies (Rel).

Lemma 2 will prove useful for the proof of Proposition 2:
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Lemma 2. ∆ = ∆1

⋃
Σ1,Σ2

∆2 is consistent iff both of

∆1,∆2 are consistent.

Proof. The “only-if” direction is trivial: If there is an OCF
accepting ∆, then it also accepts both ∆1,∆2. For the other
direction, from OCFs κ1, κ2 accepting ∆1 resp. ∆2, we can
construct κ(ω1ω2) = κ1(ω1) + κ2(ω2) (i.e., by considering
Σ1,Σ2 to be independent). It is straightforward to show that
κ is an OCF accepting ∆, hence ∆ is consistent.

Proof of Proposition 2. Let A,B ∈ Li. A |∼P∆B is equiv-
alent to ∆ ∪ {(B|A)} being inconsistent (see Ex. 1), which
is equivalent to ∆i ∪ {(B|A)} being inconsistent according
to Lemma 2 and the fact that (B|A) cannot be inconsistent
with ∆j . But this is equivalent to A |∼P∆i

B. 2

Given that both total preorders and ranking functions in-
duce inference relations, we will now lift the properties
(Rel), (Ind), and (SynSplit), respectively, to TPOs and OCFs
so that the induced inference relations (via (1) and (5)) sat-
isfy the respective property.

(Reltpo) An inductive inference operator for TPOs Ctpo :
∆ 7→�∆ on L satisfies (Reltpo) if for any ∆ =
∆1

⋃
Σ1,Σ2

∆2, and for any A,B ∈ Li (i = 1, 2),

A �∆ B iff A �∆i
B. (14)

(Indtpo) An inductive inference operator for TPOs Ctpo :
∆ 7→�∆ on L satisfies (Indtpo) if for any ∆ =
∆1

⋃
Σ1,Σ2

∆2, and for any A,B ∈ Li, C ∈ Lj (i, j ∈

{1, 2}, j 6= i),

A �∆ B iff AC �∆ BC. (15)

We obtain the syntax-splitting property again as a combi-
nation of relevance and independence:
(SynSplittpo) An inductive inference operator Ctpo :

∆ 7→�∆ for total preorders on L satisfies (SynSplittpo)
if it satisfies (Reltpo) and (Indtpo).
The next example illustrates how relations holding be-

tween two worlds over a sublanguage with respect to a sub-
base can be lifted to relations between worlds over the full
language with respect to the full base.
Example 8. We continue our running example from Ex-
ample 5. The following table shows a TPO �∆1

on Ω1 =
Ω(Σ1) for ∆1 (where the most plausible worlds are in the
lowermost layer):

pbf, pbf, pb f

pbf, pbf

pbf, pbf, pb f

Note that �∆1
corresponds to the ranking κz∆1

on Ω1 (see
also Example 4), so (DI) is satisfied. Now, for example, from
pbf ≺∆1

pbf , we may obtain pbf ≺∆ pbf by (Rel), and
furthermore pbfḋv̇ ≺∆ pbfḋv̇ via (Ind) for any literals ḋ ∈

{d, d}, v̇ ∈ {v, v} (please note that ḋ, v̇ can be arbitrary but
must be fixed, i.e., the same literals must occur on both sides
of the inequality).

Before turning to ranking functions, we analyze the rele-
vance and independence properties for total preorders a bit
closer. Again, immediately from the definition of marginal-
ization of total preorders (3), (Reltpo) claims that Ctpo is
compatible with marginalisation:

Proposition 3. An inductive inference operator Ctpo sat-
isfies (Reltpo) iff for any ∆ = ∆1

⋃
Σ1,Σ2

∆2, Ctpo(∆i) =

Ctpo(∆)|Σi , i.e., iff �∆i
= �∆|Σi .

The (Indtpo)-property needs to be exploited a bit more.
We first present a purely semantic independence property
for total preorders, and then show how (Indtpo) can be based
on it.

Definition 4. Let � be a total preorder on Ω(Σ), and let
Σ1,Σ2 be two (disjoint) subsignatures of Σ. Let Ωi = Ω(Σi)
be the respective sets of worlds, containing the reducts ωi,
i ∈ {1, 2}. Then Σ1,Σ2 are independent with respect to
�, or simply �-independent, if for any i ∈ {1, 2}, for any
ωi1, ω

i
2 ∈ Ωi, ωj ∈ Ωj , j ∈ {1, 2}, j 6= i, ωi1 � ωi2 iff

ωi1ω
j � ωi2ωj .

So, �-independence means that there should not be
any interference between (marginalized) �-relationships on
world reducts of one sublanguage and information (ex-
pressed as world reducts) from the respective other sublan-
guage. This is kind of a ceteris paribus-condition since the
same ωj has to be taken into account on both sides; other-
wise, �-relationships from Ωj might have an influence.

It is now straightforward to relate (Indtpo) with indepen-
dence with respect to total preorders:

Proposition 4. An inductive inference operator for TPOs
Ctpo : ∆ 7→�∆ on L satisfies (Indtpo) iff for any ∆ =
∆1

⋃
Σ1,Σ2

∆2, Σ1,Σ2 are �∆-independent.

This shows that inductive inference operator for TPOs
respect independence of sublanguages unless dependencies
are justified by the belief base.

So, for OCFs, we can now directly express relevance and
independence by the concepts of marginalization and inde-
pendence which are well-known in the OCF-framework (and
inherited by probabilities):

(Relocf ) An inductive inference operator for OCFs Cocf :
∆ 7→ κ∆ on L satisfies (Relocf ) if for any ∆ =
∆1

⋃
Σ1,Σ2

∆2,

Cocf (∆i) = Cocf (∆)|Σi , (16)

i.e., if κ∆i
= κ∆|Σi .

(Indocf ) An inductive inference operator for OCFs Cocf :
∆ 7→ κ∆ on L satisfies (Indocf ) if for any ∆ =
∆1

⋃
Σ1,Σ2

∆2, Σ1,Σ2 are κ-independent, i.e. for all ω1 ∈

Ω(Σ1), ω2 ∈ Ω(Σ2), κ∆(ω1ω2) = κ∆(ω1) + κ∆(ω2).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

565



(SynSplitocf ) An inductive inference operator Cocf : ∆ 7→
κ∆ for OCFs on L satisfies (SynSplitocf ) if it satisfies
(Relocf ) and (Indocf ).

In the case of OCFs, we obtain a particularly concise char-
acterization of syntax splitting:

Proposition 5. An inductive inference operator Cocf :
∆ 7→ κ∆ for OCFs on L satisfies (SynSplitocf ) iff for any
∆ = ∆1

⋃
Σ1,Σ2

∆2, the following equation holds:

κ∆ = κ∆1
+ κ∆2

. (17)

Proof. From (17), (Relocf ) and (Indocf ) can be easily ver-
ified. The other way round, if Cocf satisfies (SynSplitocf ),
i.e., (Relocf ) and (Indocf ), then we have

κ∆(ω1ω2) = κ∆(ω1) + κ∆(ω2) ((Indocf ))
= κ∆|Σ1

(ω1) + κ∆|Σ2
(ω2)

= κ∆1
(ω1) + κ∆2

(ω2) ((Relocf )),

so (17) holds.

Since system-Z inferences are not changed by atoms not
at all mentioned in the belief base ((Goldszmidt and Pearl
1996), see also Example 4), we might hope that it is also a
candidate for the (SynSplitocf ) axiom. However, system Z
does not satisfy (Indocf ), as the following example shows:

Example 9. We continue Example 4. For the world ω =
ω1ω2 with ω1 = pbf and ω2 = dv (i.e., both conditionals
from D0 are falsified, but none of the conditionals from D1),
we obtain κz∆(ω) = 1 6= 2 = κz∆(ω1) + κz∆(ω2), hence
(Indocf ) does not hold.

Note that this failure was implicitly noticed in an even
simpler, unconditional example in (Klassen, McIlraith, and
Levesque 2018) in the setting of belief revision, but it can
also be modelled in terms of nonmonotonic inferences here:
In that paper, the authors considered the belief base ∆ =
{(a|>), (b|>)} with atoms a, b, and observed that when re-
vising by ¬a, then also belief in b is lost. Simulating this
in our framework, this would mean that ¬a 6|∼κz∆b although
> |∼κz∆b holds, and indeed, for the same reasons as above,

we have κz∆(ab) = 1 = κz∆(ab).
Nevertheless, as for system P, system Z satisfies the rele-

vance axiom:

Proposition 6. Cz satisfies (Relocf ).

Proof. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2. The crucial point in this proof

is the observation that a conditional (B|A) ∈ ∆i, i ∈ {1, 2},
is tolerated by a subset ∆′ of ∆ iff it is tolerated by the in-
tersection ∆′ ∩ ∆i because of (11). This implies that the
partitioning sets of the tolerance partition of ∆ are (disjoint)
unions of the partitioning sets of the respective partitioning
sets of the two subbases. Therefore, for (B|A) ∈ ∆i, we
have Z∆((B|A)) = Z∆i((B|A)), i ∈ {1, 2}. Now it is
straightforward to check that κz∆i

= κz∆|Σi , hence (Relocf )
holds for system Z.

All postulates are downward compatible:

Proposition 7. (Relocf ) resp. (Indocf ) resp. (SynSplitocf )
implies (Reltpo) resp. (Indtpo) resp. (SynSplittpo) for the in-
duced inference operator according to (9). (Reltpo) resp.
(Indtpo) resp. (SynSplittpo) implies (Rel) resp. (Ind) resp.
(SynSplit) for the induced inference operator according to
(10).

In particular, the independence notions for total preorders
and inference relations are inherited from OCF indepen-
dence. Furthermore, we can define a qualitative condition-
alization of total preorders which does essentially the same
for total preorders what conditionalization does for proba-
bility distributions with respect to comparisons.
Definition 5. Let � be a total preorder on a set of worlds
Ω = Ω(Σ), and let A ∈ L = L(Σ). The conditionalization
of � by A, in terms �|A , is defined by

ω1 �|A ω2 iff ω1 ∧A 6 ω2 ∧A. (18)

Note that by (18) indeed, the �-relationships between
models of A are preserved, while all models of ¬A are
shifted to the uppermost layer. Qualitative conditionalization
can be lifted as usual to the level of propositions by stating
B�|A C iff AB � AC for any B,C ∈ L. With the condi-
tionalization operator, (Indtpo) can now be expressed as fol-
lows: Ctpo satisfies (Indtpo) iff for any ∆ = ∆1

⋃
Σ1,Σ2

∆2,

and for any A,B ∈ Li, C ∈ Lj , i, j ∈ {1, 2}, j 6= i,

A �∆ B iff A�∆|C B (19)

i.e., iff for all C ∈ Lj , �∆|C coincides with �∆ on L(Σi),
i, j ∈ {1, 2}, j 6= i. Note that we do not need �∆ to
be induced by a conditional belief base here, and regard-
ing Definition 4 and Proposition 4, (19) expresses the �-
independence of two sets of variables Σ1,Σ2 in terms of
qualitative conditionalization.

We continue with investigating relationships between our
syntax-splitting axioms, and we obtain a representation the-
orem for inductive inference operators based on TPOs:
Theorem 1. Let C : ∆ 7→ |∼∆ be an inductive inference
operator on L that is implemented via total preorders, i.e.,
there is an inductive inference operator for TPOs Ctpo :
∆ 7→�∆ such that

C(∆) = |∼∆ = |∼�∆
= |∼Ctpo(∆). (20)

Then C satisfies (SynSplit) iff Ctpo satisfies (SynSplittpo).

Proof. Let C be as given by (20). We show that (Ind) and
(Rel) of C are equivalent to (Indtpo) and (Reltpo) of Ctpo,
respectively. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2, and let A,B ∈ Li

(i = 1, 2). We use (Indtpo) and (Reltpo) in their contraposi-
tive versions:

A ≺∆ B iff AC ≺∆ BC, (21)
where C ∈ Lj , j ∈ {1, 2}, j 6= i,

A ≺∆ B iff A ≺∆i B. (22)

Using the connection between�∆ and |∼∆ provided by (1),
(2), and (20), it is straightforward to translate (21) and (22)
into (Ind) and (Rel), respectively, and vice versa.
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None of the inference operators considered so far was able
to fully comply with the syntax splitting axioms. In the next
section, we present inference operators based on so-called
c-revisions (Kern-Isberner 2001; Kern-Isberner 2004) that
satisfy both the independence and relevance axioms that are
needed for full syntax splitting.

6 c-Representations and c-Inference
Among the OCF models of ∆, c-representations are special
ranking models obtained by assigning individual integer im-
pacts to the conditionals in ∆ and generating the world ranks
as the sum of impacts of falsified conditionals.
Definition 6 (c-representation (Kern-Isberner 2001;
Kern-Isberner 2004)). A c-representation of a conditional
knowledge base ∆ = {(B1|A1), . . . , (Bn|An)} is an OCF
κ constructed from non-negative integer impacts ηj ∈ N0

assigned to each (Bj |Aj) such that κ accepts ∆ and is
given by:

κ(ω) =
∑

16j6n
ω|=AjBj

ηj (23)

C-representations can conveniently be specified using a
constraint satisfaction problem (for detailed explanations,
see (Kern-Isberner 2001; Kern-Isberner 2004; Beierle et al.
2018)):
Definition 7 (CR(∆)). Let ∆ = {(B1|A1), . . . , (Bn|An)}.
The constraint satisfaction problem for c-representations of
∆, denoted by CR(∆), is given by the conjunction of the
constraints, for all j ∈ {1, . . . , n}:

ηj > 0 (24)

ηj > min
ω|=AjBj

∑
k 6=j

ω|=AkBk

ηk − min
ω|=AjBj

∑
k 6=j

ω|=AkBk

ηk (25)

Constraint (24) expresses that falsification of conditionals
should make worlds less plausible, and (25) ensures that κ
as specified by (23) accepts ∆.

A solution of CR(∆) is a vector #»η = (η1, . . . , ηn) of
natural numbers. Sol(CR(∆)) denotes the set of all solu-
tions of CR(∆). For #»η ∈ Sol(CR(∆)) and κ as in Equa-
tion (23), κ is the OCF induced by #»η and is denoted by
κ#»η . CR(∆) is sound and complete (Kern-Isberner 2001;
Beierle et al. 2018): For every #»η ∈ Sol(CR(∆)), κ#»η is a c-
representation with κ#»η |= ∆, and for every c-representation
κ with κ |= ∆, there is #»η ∈ Sol(CR(∆)) such that κ = κ#»η .

We will now define model-based inductive inference op-
erators assigning a c-representation κ to each ∆. Since every
c-representation κ with κ |= ∆ yields an inference relation
expanding the beliefs in ∆, we employ a selection func-
tion for modelling the different possible choices of which
c-representation should be selected.
Definition 8 (selection strategy σ). A selection strategy (for
c-representations) is a function σ

σ : ∆ 7→ #»η

assigning to each conditional belief base ∆ an impact vector
#»η ∈ Sol(CR(∆)).

Example 10. We take up Example 5 and compute the
c-representations of ∆1 and ∆2, and their respective
constraint satisfaction problems. Using (23), we obtain
the schema for c-representations κ#»η 1 for ∆1 and c-
representations κ#»η 2 for ∆2, respectively, as follows:

ω κ#»η 1(ω) ω κ#»η 1(ω)

pbf η1
3 pbf 0

pbf η1
1 pbf η1

1

pbf η1
2 + η1

3 pbf 0
pb f η1

2 pb f 0

ω κ#»η 2(ω)

vd η2
1

vd 0
vd 0
vd 0

(26)

The vectors #»η 1 = (η1
1 , η

1
2 , η

1
3) and #»η 2 = (η2

1) are con-
strained by the inequalities η1

1 > 0; η1
2 > η1

1 ; η1
3 > η1

1 ; η2
1 >

0; so #»η 1 = (1, 2, 2) and #»η 2 = (1) would be solutions with
minimal ηji . A selection strategy σ then might reasonably
choose σ(∆1) = (1, 2, 2) and σ(∆2) = (1).
Definition 9 (inductive inference operator Cc-rep

σ ). An induc-
tive inference operator for c-representations with selection
strategy σ is a function

Cc-rep
σ : ∆ 7→ κσ(∆)

where σ is a selection strategy for c -representations; as be-
fore, |∼κσ(∆)

is obtained via Equation (5).

Note that Cc-rep
σ is an inductive inference operator because

each |∼κσ(∆)
satisfies both (DI) and (Trivial Vacuity).

In principle, for every ∆, a selection strategy may choose
some impact vector independently from the choices for all
other belief bases. The following property characterizes se-
lection strategies that preserve the impacts chosen for sub-
bases if ∆ splits into these subbases. In accordance with our
notation in Example 10, for an impact vector #»η , we will
simply write #»η 1 and #»η 2 for the corresponding projections
#»η |∆1

and #»η |∆2
, and ( #»η 1, #»η 2) for their composition.

(IPc-rep) A selection strategy σ is impact preserving if
σ(∆) = (σ(∆1), σ(∆2)) for any ∆ = ∆1

⋃
Σ1,Σ2

∆2.

Example 11. If the selection strategy σ in Example 10 is
impact preserving then σ(∆) = (1, 2, 2, 1).

The following proposition provides the basis for impact
preserving selection strategies. It shows the fundamental
property of c-representations stating that the composition of
any impact vectors for subbases ∆1,∆2 which ∆ splits into
yields an impact vector for ∆, and vice versa.
Proposition 8. For any ∆ = ∆1

⋃
Σ1,Σ2

∆2 we have

Sol(CR(∆)) = {( #»η 1, #»η 2) | #»η i ∈ Sol(CR(∆i)), i =
1, 2}, i.e.:

Sol(CR(∆)) = Sol(CR(∆1))× Sol(CR(∆2))

Proof. (sketch) Due to lack of space, we outline
the proof. Let ∆1 = {(B1|A1), . . . , (Bn1

|An2
)},

∆2 = {(Bn1+1|An1+1), . . . , (Bn1+n2
|An1+n2

)};
∆ = {(B1|A1), . . . , (Bn|An)}, thus n = n1 + n2.
Let us denote the constraint variables in CR(∆1) with
η1

1 , . . . , η
1
n1

and in CR(∆2) with η2
n1+1, . . . , η

2
n. Hence, the

following statements
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(S1) #»η 1 ∈ Sol(CR(∆1)), #»η 2 ∈ Sol(CR(∆2))

(S2) ( #»η 1, #»η 2) ∈ Sol(Γ), Γ = CR(∆1) ∪ CR(∆2)

are obviously equivalent. Let us use η1
1 , . . . , η

1
n1
, . . . ,

η2
n1+1, . . . , η

2
n also as the constraint variables for expressing

CR(∆). By exploiting in particular that any atom from Σ1

(resp. Σ2) can not influence the verification of falsification of
a conditional from ∆2 (resp. ∆1), we can stepwise transform
the right-hand side of the constraint (25) for ηij in Γ to the
corresponding constraint for ηij in CR(∆) without changing
the set of solutions for the constraint. This yields that (S2)
and thus also (S1) is equivalent to ( #»η 1, #»η 2) ∈ Sol(CR(∆)),
completing the proof.

For every impact preserving selection strategy, c-
representations satisfy (SynSplitocf ). Moreover, (IPc-rep)
precisely characterizes the inductive operators based on sin-
gle c-representations that satisfy syntax splitting.

Proposition 9. Cc-rep
σ satisfies (SynSplitocf ) iff there is a

selection strategy σ′ such that σ′ satisfies (IPc-rep) and
Cc-rep
σ = Cc-rep

σ′ .

Proof. First, let σ satisfy (IPc-rep); we will show that Cc-rep
σ

satisfies (SynSplitocf ). Let ∆,∆1,∆2 be as in the proof
of Proposition 8, σ(∆) = #»η , σ(∆i) = #»η i, and hence
Cc-rep
σ (∆) = κ#»η ,C

c-rep
σ (∆i) = κ#»η i , for i ∈ {1, 2}, and

#»η = ( #»η 1, #»η 2). Furthermore, let η1
1 , . . . , η

2
n be as in the

proof of Proposition 8. According to Proposition 5, it suf-
fices to show, for every ω,

κ#»η (ω) = κ#»η 1(ω) + κ#»η 2(ω) (27)

which we obtain by the following derivation:

κ#»η (ω) =
∑

ω|=AjBj
(Bj |Aj)∈∆

ηij =
∑

ω|=AjBj
(Bj |Aj)∈∆1

η1
j +

∑
ω|=AjBj

(Bj |Aj)∈∆2

η2
j

= κ#»η 1(ω) + κ#»η 2(ω)

Hence, Cc-rep
σ satisfies (SynSplitocf ). As an immediate con-

sequence, also every Cc-rep
σ′ with Cc-rep

σ′ = Cc-rep
σ satisfies

(SynSplitocf ). The proof of the other direction is obtained
by using similar arguments and Proposition 8.

The next proposition provides useful splitting properties
of c-representations regarding formulas from a sublanguage.

Proposition 10. For any ∆ = ∆1

⋃
Σ1,Σ2

∆2, for all #»η ∈

Sol(CR(∆)), Fi ∈ L(Σi), i ∈ {1, 2}, we have κ#»η 1(F2) =
κ#»η 2(F1) = 0 and κ#»η (Fi) = κ#»η i(Fi).

Proof. (sketch) Similar as in Proposition 8, the crucial point
is again to exploit the fact that any atom from one sub-
language can not influence the verification/falsification of a
conditional over the other sublanguage.

Inference based on single c-representations does not only
satisfy syntax splitting as laid out in Prop. 9, but also ex-
hibits other desirable inference properties (Kern-Isberner
2001; Kern-Isberner 2004). C-inference was introduced in

(Beierle, Eichhorn, and Kern-Isberner 2016; Beierle et al.
2018) as the skeptical inference relation obtained by taking
all c-representations of a belief base ∆ into account.

Definition 10 (c-inference, |∼c-sk
∆ ). Let ∆ be a belief base

and letA,B be formulas.B is a (skeptical) c-inference from
A in the context of ∆, denoted byA |∼c-sk

∆ B, iffA |∼ κB holds
for all c-representations κ of ∆.

Because |∼c-sk
∆ satisfies (DI) and (Trivial Vacuity) the follow-

ing proposition holds.
Proposition 11 (inductive inference operator Cc-sk). The
function

Cc-sk : ∆ 7→ |∼c-sk
∆

assigning to each ∆ the c-inference relation |∼c-sk
∆ is an in-

ductive inference operator from conditional belief bases.
The next proposition shows that skeptical c-inference sat-

sifies syntax splitting. Note that since in general, the infer-
ence relation |∼c-sk

∆ can neither be represented by a TPO nor
by an OCF, the corresponding syntax splitting characterisa-
tions are not applicable to it.
Proposition 12. Cc-sk satisfies (SynSplit).

Proof. Let ∆ = ∆1

⋃
Σ1,Σ2

∆2. W.l.o.g. assume A,B ∈ L1

and C ∈ L2, and let Ḃ ∈ {B,B}. For proving (Rel), we
have to show A |∼c-sk

∆ B iff A |∼c-sk
∆1
B. Thus, due to Proposi-

tion 8, it suffices to show

κ#»η (AB) < κ#»η (AB) iff κ#»η 1(AB) < κ#»η 1(AB) (28)

for all #»η = ( #»η 1, #»η 2) ∈ Sol(CR(∆)). Due to Proposi-
tion 10, (28) holds because κ#»η (AḂ) = κ#»η 1(AḂ). For prov-
ing (Ind), we have to show A |∼c-sk

∆ B iff AC |∼c-sk
∆ B. Due to

Proposition 8, it suffices to show

κ#»η (AB) < κ#»η (AB) iff κ#»η (ACB) < κ#»η (ACB) (29)

for all #»η ∈ Sol(CR(∆)). Due to Lemma 1, (29) holds be-
cause Σ1 and Σ2 are κ#»η -independent and thus κ#»η (AḂ) +

κ#»η (C) = κ#»η (ACḂ).

In this way, c-representations help us defining an infer-
ence relation that fully complies with (SynSplit). Note that
Cc-sk does not make use of selection strategies any more.

7 Related Work
Research works that are most closely related to this approach
are papers dealing with syntax splitting in belief revision,
in particular, (Kern-Isberner and Brewka 2017). The con-
nection between inductive reasoning from conditional belief
bases and advanced, iterated belief revision becomes quite
obvious if one considers revision tasks that aim at revis-
ing an epistemic state Ψ by a set of conditionals ∆, i.e.,
Ψ ∗ ∆. While this is far beyond classical AGM belief revi-
sion theory (Alchourrón, Gärdenfors, and Makinson 1985),
some approaches have been presented to solve this problem
nevertheless. For example, c-revisions (Kern-Isberner 2004)
provide a suitable methodology for this. If we can solve the
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above-mentioned revision task Ψ ∗ ∆ for (basically) any Ψ
and any ∆, then we can apply such a revision method to any
∆ and a uniform epistemic state Ψu not making any differ-
ence between possible worlds. From this, we can obtain an
inductive, model-based inference relation based on the in-
ferences that (Ψu ∗∆) provides. Note that c-representations
(Def. 6) arise from c-revisions in this way.

The paper (Kern-Isberner and Brewka 2017) presents syn-
tax splitting axioms for the revision of epistemic states
Ψ represented by total preorders �Ψ by sets of proposi-
tions, generalizing and extending the seminal work of Parikh
(Parikh 1999) and the paper (Peppas et al. 2015). The cen-
tral axioms of (Kern-Isberner and Brewka 2017), Marginal-
ized Revision (MR) and Strong Iterated P, Pit, are extended
to sets of conditionals by the central axioms in this paper,
Relevance and Independence, for inductive inferences. Note
that also the axiomatization of syntax splitting presented
in (Kern-Isberner and Brewka 2017) can be extended in a
straightforward way to also deal with revisions by sets of
conditionals. The non-equivalence of (MR) and Pit that has
been noticed in that paper becomes quite clear regarding
the results of this paper: Relevance and Independence are
two independent postulates which get connected in the OCF
framework by (17), but are not related for general induc-
tive inference operations, nor for total preorders. However,
as shown by (Peppas et al. 2015) and (Kern-Isberner and
Brewka 2017), basic versions of these two postulates refer-
ring only to belief sets are found to be equivalent in the AGM
framework. Note also that our concept of�-independence is
basically equivalent to �-splitting from (Kern-Isberner and
Brewka 2017), more precisely, a total preorder � splits over
(Σ1,Σ2) iff Σ1,Σ2 are �-independent; for further details,
please see (Kern-Isberner and Brewka 2017).

The two readings of Parikh’s syntax splitting axiom (P)
(Parikh 1999) that are mentioned in (Peppas et al. 2015),
the weak and the strong reading, appear to be “two sides of
the same coin” in our approach to inductive reasoning from
conditional belief bases where we consider a splitting of the
belief base ∆ into two peer subbases ∆1,∆2 over disjoint
subsignatures. Weak (P) means that only the relevant part
of the language should be revised, leaving the other parts
unchanged (for technical details, see (Peppas et al. 2015)).
This is covered in our approach by allowing one of the sub-
bases ∆i to be empty, and by ensuring that an empty belief
base should not yield any inferences, i.e., our axiom (Triv-
ial Vacuity). Note that (Trivial Vacuity) in this paper cor-
responds roughly to (Trivial Vacuity) in (Kern-Isberner and
Brewka 2017) when Ψ = Ψu. Strong (P), i.e., how the rele-
vant part of the epistemic state is changed, is covered in our
framework by the (Relevance) axioms.

Our (Independence) axioms generalize axioms of Irrele-
vance that have been mentioned in various publications (e.g.,
(Goldszmidt and Pearl 1996; Delgrande and Pelletier 1998;
Benferhat, Dubois, and Prade 2002)):

(Irrelevance) If c is an atom that does not occur in ∆, and
|∼ is based on ∆, then A |∼B implies A ∧ c |∼B.

(Irrelevance) is covered in our approach by allowing the “ir-
relevant” subbase to be empty. But note that our (Indepen-

dence) axioms are significantly stronger than (Irrelevance)
because, e.g., system Z satisfies (Irrelevance) (Goldszmidt
and Pearl 1996), but not (Indocf ) (see section 5). On the
other hand, the (Relevance) axiom for inductive inference
operators here corresponds to Strong Irrelevance for infer-
ence relations in (Weydert 2003). Also Lehmann (Lehmann
1995) emphasizes the importance of independence for non-
monotonic inferences but he did not give a clear definition
of his independence concept. Obviously, the concept he had
in mind is broader than (Independence) as defined here be-
cause most of his examples require more general considera-
tions than syntax splitting.

In general, the notions of (ir)relevance and independence
have not been used coherently throughout the literature, nor
is there a general agreement what suitable formal implemen-
tations would be, as this discussion shows. Although deal-
ing only with syntactic aspects, our clear formal definitions
might help sharpening and discriminating these concepts.

The paper (Kern-Isberner 2008) pursues a more general
idea than this paper by associating inference operators with
conditional belief bases which are parametrized by epis-
temic states (serving as background beliefs), but it focusses
on more classical axioms like cumulativity. Also Weydert
(Weydert 2003) considers inference relations using condi-
tional belief bases more broadly, where syntax splitting only
plays a minor role; interestingly, he also uses selections
strategies in the form of choice functions on OCF-like se-
mantic structures. Much more spefically, we apply selec-
tion strategies to c-representations which themselves imple-
ment selection principles, most fundamentally the principle
of conditional preservation (Kern-Isberner 2004).

There are also weak relations to works on the topic of for-
getting: we apply ideas from variable independence (Lang,
Liberatore, and Marquis 2003) to conditional belief bases,
and Delgrande’s general approach to forgetting (Delgrande
2017) corresponds to marginalisation (on a propositional
level) as used in this paper.

8 Conclusion
Syntax splitting has been analyzed successfully in the con-
text of belief revision. To the best of our knowledge, this
is the first paper that conducts a similar investigation for
nonmonotonic inference systems based on conditional be-
lief bases. The analysis turns out to be at least as fruitful
as for belief revision. Our formal definition of syntax split-
ting for inductive inference operators not only gives a pre-
cise characterization of this notion and clearly reveals its two
inherent aspects, namely relevance and independence. It also
leads to new insights regarding the best-known systems for
reasoning from conditional belief bases, namely system P,
system Z and c-inference. In particular, whilst all three sys-
tems satisfy relevance, the second important aspect of syntax
splitting, independence, is only satisfied by c-inference. We
believe this result not only increases our understanding of
these inference systems, it also provides additional support
for c-inference, since independence seems to be a desirable
property to have.

As to future work, there are various open research top-
ics that suggest themselves. First of all, it would be inter-
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esting to find possible modifications of system P and sys-
tem Z leading to satisfaction of the independence property.
Secondly, there might be further reasonable postulates for
inductive inference operators which haven’t been identified
so far. And finally, a study of syntax splitting for nonmono-
tonic inference systems which are not inductive in the sense
of Def. 1 since they are not based on conditional belief
bases, like answer set programming or abstract argumenta-
tion, might also reveal interesting new insights.
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