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Abstract

A common approach to planning with partial information
is replanning: compute a plan based on assumptions about
unknown information and replan if these assumptions are
refuted during execution. To date, most planners with in-
complete information have been designed to provide guaran-
tees on completeness and soundness for the generated plans.
Switching focus to performance, we measure the robustness
of a plan, which quantifies the plan’s ability to avoid failure.
Given a plan and an agent’s belief, which describes the set
of states it deems as possible, robustness counts the number
of world states in the belief from which the plan will achieve
the goal without the need to replan. We formally describe the
trade-off between robustness and plan cost and offer a solver
that is guaranteed to produce plans that satisfy a required level
of robustness. By evaluating our approach on a set of standard
benchmarks, we demonstrate how it can improve the perfor-
mance of a partially informed agent.

1 Introduction
In many realistic applications, agents need to form a plan
for reaching a goal with only partial information about their
surroundings. That is, an agent needs to decide how to act
based on its current belief, which describes the set of states
it deems as possible. Among the different approaches to
planning with partial information (Bonet and Geffner 2000;
Palacios and Geffner 2009; Bonet and Geffner 2011; Braf-
man and Shani 2014; Muise, Belle, and McIlraith 2014;
Brenner and Nebel 2009; Albore, Palacios, and Geffner
2009; Maliah et al. 2014), we adopt the replanning approach
of Bonet and Geffner (2011), where an agent computes a
plan while making assumptions about the values of unknown
variables. It then executes the generated plan until reaching
the goal or an assumption is refuted, in which case it replans.

For planning, Bonet and Geffner (2011) suggest the KP
compilation, which transforms the planning problem into a
corresponding classical planning formulation. The actions
of the compiled problem are: (i) execution actions repre-
senting the physical behavior of the agent in the environ-
ment; (ii) the assumptions it can choose to make about the
values of unknown variables; and (iii) the reasoning it can
do to infer new information from the data it has collected.

A key merit of the KP compilation lies in the ability to
use any off-the-shelf classical planner to find a solution to

the compiled problem. However, a major shortcoming is
that, while it comes with completeness and soundness guar-
antees, it does not provide a way to reason about the agent’s
performance in regard to the different types of actions used
by the solution to the compiled problem. For example, an
optimal solution may be one that favors performing more
physical actions over using acquired data to infer new infor-
mation. This would not be appropriate in contexts in which
plans are generated to control a robot whose physical actions
have a high cost, but where the use of sensory information
for decision making has a low cost. On the other hand, an
optimal solution might involve making many assumptions
and few physical actions, which, due to the increased chance
of replanning, would not be ideal in settings such as under-
water missions where access to a planner may only be pos-
sible via a limited communication channel.

We explore this trade-off and provide a new translation
that can accommodate for various agent preferences regard-
ing which performance criteria to prioritize. In particular,
we assume that the cost of reasoning about available infor-
mation is negligible but allow the agent to decide to what
extent it wants to minimize the need for replanning. For
this, we adopt a robustness measure that quantifies the plan’s
ability to avoid failures (Nguyen, Sreedharan, and Kamb-
hampati 2017). Given a plan and an agent’s belief, robust-
ness counts the number of states in the belief from which the
plan will achieve the goal without replanning.

Given our measure for plan robustness, we suggest the
KProb compilation, extending KP by allowing the agent to
specify its required level of robustness. We show that by tun-
ing the cost associated with making assumptions, our com-
pilation supports agents with different performance prefer-
ences. In particular, increasing the cost of assumptions pro-
motes robust plans in which the need to replan is minimized
in favor of performing more execution actions. On the flip
side, reducing the cost of assumptions promotes plans that
compromise robustness in order to minimize the execution
cost of the generated plan.

Example 1. Consider Figure 1, depicting a simple example
from the Wumpus domain (Russell and Norvig 2016), where
a partially informed agent aims to reach the cell marked by
‘Goal’ without encountering a deadly wumpus or pit. The
agent, which enters the system at ‘Start’, always knows its
current position and has a map of the environment (with the
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Figure 1: Wumpus Domain - Example 1

location of the goal). It initially does not know the number
and locations of deadly wumpuses and pits in the environ-
ment. When in a cell adjacent to a wumpus or pit, it senses
a ‘stench’ or ‘breeze’, respectively. Unless the agent has
previous information about adjacent cells, the agent does
not know which direction the signal originates from. In our
example, there is one wumpus in cell (B, 3) and no pits.

We assume the agent is optimistic when planning but con-
servative when acting (Bonet and Geffner 2011). Optimistic
planning means the agent can make assumptions about un-
known variables in order to compute a plan. Conservative
means it only takes actions for which the outcome is known;
i.e. when the agent senses a stench or breeze, it only moves
to an adjacent cell if it can infer it is ‘safe’, (i.e. with no
wumpus or pit); it backtracks otherwise.

We consider two settings that differ in the initial informa-
tion of the agent. In Figure 1[left], the agent knows that
cells (A, 2), (A, 3), (A, 4), (B, 4), (C, 1), (C, 4) and the
goal (C, 3) are all safe. The optimal plan generated by the
KP compilation for the initial belief goes right three steps,
up two steps and then left one step (6 physical movements
and no assumptions or ramifications). The KProb compila-
tion can instead account for different agent preferences. If
the agent wants to be maximally robust and make the mini-
mal number of assumptions, its plan will be the same as for
KP . The agent can also decide to execute a less robust plan
that minimizes the number of physical actions. In this case,
it will assume cells (B, 1) and (C, 2) have neither pits nor
wumpuses and go up two steps and then right two steps.

In Figure 1[right], the agent knows that the goal cell
(C, 3), and cells (A, 2), (A, 3), (A, 4), (B, 4) and (C, 4)
are safe. It also knows that cells (B, 1), (C, 1) and (C, 2)
have neither pits nor wumpuses. This means it is possible
to infer they are safe using ramification actions, but the plan
generated by the KP compilation is the same as for the left
example. In contrast, by ignoring the cost of reasoning, the
KProb compilation finds a plan with fewer movements (for
any specified robustness preference), which first infers cells
(B, 1), (C, 1) and (C, 2) are safe at no cost, and then fol-
lows the same execution actions as in the left case.

Our contributions are threefold. First, we provide the first
principled way to account for the trade-off between plan cost
and robustness. Second, we offer the KProb compilation as
an extension of KP that allows the user to specify its de-
sired level of robustness, and we specify conditions under
which optimal solutions found using KProb are guaranteed
to comply with the specified robustness. Finally, we com-
pare our approach against the KP compilation on a set of

various robustness specifications that range from conserva-
tive agents that want to avoid replanning to agents that are
willing to compromise robustness for efficiency of physical
movements. Our evaluation on a set of standard benchmarks
shows that plans with various levels of robustness can be ac-
quired efficiently. We also demonstrate how increased ro-
bustness reduces the need to replan.

2 Preliminaries and Related Work
2.1 Planning under Partial Observability
We follow Bonet and Geffner’s (2011) approach to modeling
agents with partial knowledge and consider planning under
partial observability defined as follows.

Definition 1 (Planning under partial observability). A
planning under partial observability (PPO) problem is a tu-
ple P = 〈F ,A, I, G,O〉 where F is a set of fluent sym-
bols, A is a set of deterministic actions, I is a set of clauses
over F -literals defining the initial situation, G is a set of
F -literals defining the goal condition, and O represents the
agent’s sensor model.

An action a ∈ A has a set of F -literals preconditions, and
a set of conditional effects C → L, where C is a set of F -
literals and L is an F -literal. The sensor model O is a set of
observations o ∈ O represented as pairs (C,L) where C is a
set of F -literals and L is a positive fluent, indicating that the
value of L is observable when C is true. Each observation
o = (C,L) can be conceived as a sensor on the value of L
that is activated when C is true.

A state s is a truth valuation over the fluents F (‘true’ or
‘false’). For an agent, the value of a fluent may be known or
unknown. A fluent is hidden if its true value is unknown. A
belief b is a non-empty collection of states the agent deems
as possible at some point. A formula F holds in b if it holds
for every state s ∈ b. An action a is applicable in b if the
preconditions of a hold in b, and the successor belief b

′
is the

set of states that results from applying the action a to each
state s in b. When an observation o = (C,L) is activated,
the successor belief is the set of states in b that agree on L
(i.e., the set of states where fluent L has the sensed value).
The initial belief is the set of states that satisfy I , and the
goal belief are those that satisfy G. A formula is invariant if
it is true in each possible initial state and remains true in any
state reachable from it. A history is a sequence of actions
and beliefs h = b0, a0, b1, a1, . . . , bn, an, bn+1, s.t. ai is
applicable in bi. Each action a can be associated with a cost
C(a), and the cost of history h, denoted Ca(h) = ΣiC(ai),
is the accumulated cost of the performed actions (equivalent
to path length when action cost is uniform). A history is
complete if the agent performing the actions reaches a goal
belief. A solution to a PPO problem is a policy π, which
is a partial mapping from beliefs to actions. Specifically, a
solution can be a plan π which is a sequence of actions.

2.2 Approaches to Online Planning
There are two main approaches to planning with partial in-
formation: offline planning and online planning (Brafman
and Shani 2014). In the offline approach, a complete plan
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tree is generated to account for all the contingencies that
may arise. This tree may grow exponentially in the num-
ber of problem variables, making it an impractical approach
when computation time and resources are limited in all but
simple problems. In the online approach, the agent makes
local decisions on how to behave next, which can typically
be generated more quickly but cannot provide the same guar-
antees as the offline approach.

A variety of both offline and online approaches have been
developed to solve PPO planning (Bonet and Geffner 2000;
Palacios and Geffner 2009; Bonet and Geffner 2011; Braf-
man and Shani 2014; Muise, Belle, and McIlraith 2014;
Brenner and Nebel 2009; Albore, Palacios, and Geffner
2009; Maliah et al. 2014; Bonet and Geffner 2014b; Koenig,
Tovey, and Smirnov 2003). A common technique for on-
line planning is replanning (Zelinsky 1992). Here, the agent
finds a plan for its current state based on some simplifica-
tion of its planning problem and executes a prefix of the plan
until discrepancies between the plan and the information ac-
quired during the execution emerge and require replanning.

Most existing online approaches focus on providing
soundness and completeness guarantees on the generated
plans or on the task of belief tracking, which is the task of
updating the belief with new information (Bonet and Geffner
2014a). Specifically, Bonet and Geffner (2011) show that
the linear KP translation, which we extend in this work, is
sound and complete for problems with fully connected state
spaces that are simple, i.e. the non-unary clauses in the ini-
tial belief are all invariant, and no hidden fluents appear in
the body of a conditional effect. However, they do not con-
sider the generated plan’s ability to avoid the need to replan,
which is instead our focus.

One exception is the recent work by Shmaryahu, Shani,
and Hoffmann (2019), who provide various comparative
criteria for plans and policies for PPO planning problems.
One suggested criteria is robustness to mishaps, according
to which unlikely outcomes are pruned when exploring the
search tree. Similarly, Nguyen, Sreedharan and Kambham-
pati (2017) consider problems with incomplete specifica-
tion of the domain models and use robustness to represent
the probability mass of possible models under which a plan
achieves the goals. They present two approaches to syn-
thesizing plans that maximize robustness given the agent’s
current belief, while ignoring plan cost. We instead use the
robustness measure to count the number of states in a be-
lief in which the calculated plan can be executed and focus
on providing plans that comply with a user specified level
of robustness. We study the trade-off between the required
robustness and the execution cost of the generated plan.

A special case of the KProb compilation we present here
was informally described in Keren et al. (2020) for partially
informed agents that require plans that make the minimal
number of assumptions among those that minimize the exe-
cution cost. Here, we offer the first formal definition of this
approach, extending it to allow the user to specify its desired
level of robustness, and specify conditions under which op-
timal solutions found using KProb are guaranteed to comply
with the specified robustness level.

2.3 The K-replanner and the KP Translation
To represent our acting agents, we use the K-replanner by
Bonet and Geffner (2011), which follows the replanning ap-
proach. The K-replanner constructs a policy that solves a
PPO problem P in an online fashion, setting the response
to the current belief as the prefix of a plan obtained with an
off-the-shelf classical planner.

Algorithm 1 K-replanner (PPO problem P)

1: bcur = b0
2: while G doesn’t hold in bcur (while goal belief not achieved) do
3: πcur ← ComputeP lan(P, bcur)
4: if P has no solution for bcur then
5: return { FAIL}
6: end if
7: for action a in πcur do
8: if a is not applicable in bcur then
9: break (return to Line 2)

10: end if
11: bcur ← Apply(a,P, bcur) (apply a to bcur , fire the applica-

ble sensors and update the current belief)

12: end for
13: end while
14: return { SUCCESS}

The pseudo code for the K-replanner is given in Algo-
rithm 1. After initialization of the agent’s belief (Line 1), the
iterative planning process, which continues until the goal be-
lief is reached, starts at Line 2. At each stage, a plan πcur is
computed for the current belief (Line 3). If the current prob-
lem has no solution, the solver fails (Line 4). Otherwise, ac-
tions in the generated plan are applied in a loop (Line 7). If
an action is not applicable (Line 8), replanning is performed
by returning to Line 2. Otherwise, the action is applied and
the belief is updated after firing (activating) applicable sen-
sors and performing inference to deduce new information.
Line 14 is reached if a goal belief is achieved, in which case
‘SUCCESS’ is returned.

Left undefined in Algorithm 1 is how to generate a plan
for the current belief in Line 3. A practical approach is to
produce a plan based on a partial, inaccurate or simplified
version of the actual planning problem. Bonet and Geffner
(2011) use the KP translation1 for this, which transforms the
partially observable planning problem into a classical plan-
ning problem.

Definition 2 (KP Translation). For a (PPO) problem P =
〈F ,A, I, G,O〉, KP = 〈F ′, I ′, G′,A′〉, is the fully observ-
able problem where

• F ′ = {KL,K¬L : L ∈ F}
• I ′ = {KL : L ∈ I}
• G′ = {KL : L ∈ G}

1Note that Bonet and Geffner (2011) indicate their translation as
K(P). We renamed it as KP because, as it will become apparent in
Section 4, by following the original convention, we would have had
to add another parameter (i.e. the cost of assumptions) to K(P),
making the name impractical to use.
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• A′ = {A′exe ∪ A
′

as ∪ A
′

ram} where
– A′exe includes all actions a ∈ A, but with each pre-

condition L replaced by KL, and each conditional ef-
fect C → L replaced by KC → KL and ¬K¬C →
¬K¬L.

– A′as = {a(C,L), a(C,¬L)|o = (C,L) ∈ O} where
∗ prec(a(C,L)) = {KC,¬KL,¬K¬L} and

eff (a(C,L)) = {KL})
∗ prec(a(C,¬L)) = {KC,¬KL,¬K¬L} and

eff (a(C,¬L)) = {K¬L}
– A′ram = {aram| for invariants ¬C ∨ L in I} where
∗ prec(aram) = {KC} and
∗ eff (aram) = {KL}

At the core of the KP translation is the substitution of
each fluent L in the original problem with a pair of fluents
KL and K¬L, representing whether L is known to be true
or false, respectively (Albore, Palacios, and Geffner 2009).
The action setA′ = A′exe ∪A

′

as ∪A
′

ram in the transformed
problem contains three types of actions. The set A′exe de-
notes the original set of actions (the execution actions): each
original action a ∈ A is transformed into an equivalent ac-
tion that replaces the use of every literal L (¬L), with its
corresponding fluent KL (K¬L). The set A′as represents
assumptions that can be made about observations that may
be collected during execution. Each observation (C,L) is
translated into two deterministic actions, one for each pos-
sible value of L. These actions allow the solver to compute
a plan while choosing preferred values of (making assump-
tions about) unknown variables. The set A′ram, which we
refer to as ramification actions, corresponds to the inference
actions performed by the agent. Each invariant clause de-
fined in I is translated into a set of ramification actions that
can be applied to set the truth value of relevant variables as
new sensed information is collected from the environment.

This representation captures the underlying planning
problem at the knowledge level (Petrick and Bacchus 2002),
accounting for the exploratory behavior of a partially in-
formed agent. In our example, an execution action aexe ∈
A′exe corresponds to a movement between adjacent cells. An
action aas ∈ A

′

as can correspond to the agent assuming that
a cell on its planned path has no pit. A ramification action
aram ∈ A

′

ram can be activated to infer that a cell is safe
when an agent is in an adjacent cell and does not sense a
breeze or stench.

By using the KP transformation, the agent is following a
planning under optimism approach. The agent plans while
making the most convenient assumptions about the values
of hidden variables. If during execution an observation re-
futes some assumptions, the agent revises its assumptions
and re-plans accordingly. To demonstrate, consider an agent
in the setting depicted in Figure 1[left] that follows a plan
that includes moving to cell (B, 2) on the way to the goal
and is therefore based on the assumptions that the cell has no
stench and no breeze. When the agent reaches cell (B, 2),
it senses the stench, and, since one of its assumptions is re-
futed, the agent needs to compute a new plan to the goal.

3 Assessing Plan Quality
Using the PPO problem formulated in Definition 1, an
agent’s belief represents the set of states deemed as possi-
ble at a given stage. To plan its behavior, the agent can
make assumptions about the unknown variables by select-
ing their values. During execution, each time an action is
performed, all applicable sensors are fired. Assumptions are
refuted when a sensed value contradicts an assumption that
was made, raising the need to replan.

We are interested in assessing and comparing the effi-
ciency of plans produced by different planners. We con-
sider a plan of a PPO problem P to be a sequence π =
a0, a1, · · · , an of execution actions ai ∈ A (excluding any
ramification or assumptions). One natural performance mea-
sure by which to evaluate a plan is by the accumulated cost
of its actions, denoted Ca(π) = ΣiC(ai).

We also consider the robustness of a plan, representing
the number of possible world states in which the plan is ex-
ecutable, meaning that the entire sequence of actions can be
applied from that state without any need for replanning.
Definition 3 (Executable Plan). Given a PPO problem P ,
let SP be the set of possible world states in P . A plan
π = 〈a0, a1, . . . , an〉 is executable in s ∈ SP if a0 is ap-
plicable in s and for any 0 < i ≤ n, ai is applicable in
ai−1(. . . (a0(s))).

In the context of PPO planning, a plan that an agent fol-
lows may not be executable in all the states in the initial
belief b0. In particular, it is not executable in the true state if
an assumption that is made at planning time is refuted during
execution. The robustness of a plan is defined with regard to
the agent’s current belief, counting the number of states in
the belief in which the plan is executable.
Definition 4 (Plan robustness). Given a PPO problem P ,
the robustness RP(π, b) of a plan π w.r.t. a belief b in P is
the number of states s ∈ b s.t. π is executable in s.

Considering Figure 1[left], a plan that goes up two steps
and then right two steps has higher robustness than a plan
that goes up, right, up, right since the latter relies on the
extra assumptions that there is no stench and no breeze in
cell (B, 2).

Maximum robustness is achieved with a conformant plan
(Palacios and Geffner 2009), which is a plan that does not
rely on any assumptions and is executable for all the states
in the initial belief. However, such a plan may not exist even
when the goal can be achieved. Compromising robustness,
an optimistic approach allows the planner to make assump-
tions about unknown variables, limiting the number of states
in the belief in which the generated plan is executable.

We now define the Full Observability Optimal (FO-
Optimal) cost of a PPO problem, which represents the min-
imum cost to goal that the agent would incur if it had full
knowledge of the true world state.
Definition 5 (FO-Optimal cost and plan). Given a
PPO problem P , the Full Observability Optimal (FO-
Optimal) cost of P , denoted by CFO

∗
(P), is the minimum

cost of a plan from the initial true world state to a goal state.
When there is no such plan, CFO

∗
(P) = ∞. Otherwise,
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a plan π is FO-Optimal in P if it is executable in the ini-
tial true world state, it reaches a goal state, and its cost is
CFO

∗
(P).

Another cost that we consider is the Optimistic-
Optimal cost of a PPO problem P , which is the minimum
cost among plans from the states in the initial belief to a
goal belief.

Definition 6 (Optimistic-Optimal cost and plan). Given a
PPO problem P , the Optimistic-Optimal cost of P , denoted
by COO(P), is the minimum among the costs of plans that
reach a goal belief from a state in the initial belief b0. When
there is no such plan, COO(P) =∞. Otherwise, a plan π is
an Optimistic-Optimal plan of P if it has the minimum cost
among the plans that reach a goal belief from a state in the
initial belief b0.

An Optimistic-Optimal plan is not necessarily executable
for all states in the belief and will fail if it is not executable
for the true world state. A useful observation is that the FO-
Optimal cost serves as an upper bound on the Optimistic-
Optimal cost.

Lemma 1. Given a PPO problem P where the initial true
world state is assumed to belong to b0,

COO(P) ≤ CFO
∗
(P)

Proof. Making the correct assumptions for all unknown
variables is a valid set of assumptions that yields a plan
which costs CFO

∗
(P).

A plan is OP-Rob if it has the highest robustness among
the optimistic-optimal plans. A plan is EXE-Rob if it has the
minimum cost among the plans to a goal belief that maxi-
mize robustness.

Definition 7 (OP-Rob plan). Given a PPO problem P ,
a plan π is an OP-Rob plan for P if it is an Optimistic-
Optimal plan of P and there is no other optimistic-optimal
plan for P π′ s.t. RP(π′, b0) > RP(π, b0).

Definition 8 (EXE-Rob plan). Given a PPO problem P ,
a plan π is an EXE-Rob plan for P if, across all plans that
reach a goal belief and maximize robustness, there is no plan
with a lower cost.

An OP-Rob plan succeeds without the need to replan for
the maximum number of states in the initial belief among all
optimistic-optimal plans. An EXE-Rob plan is a minimum
cost plan among the plans that avoid replanning for the max-
imum number of states in the initial belief.

These two plan characteristics correspond to agents with
different performance criteria. Agents such as large scale
robots for which executing actions in the environment is ex-
tremely costly but replanning is cheap may prefer follow-
ing OP-Rob plans. Agents for which (re)planning is costly
may prefer following an EXE-Rob plan. This is relevant,
for example, to robots performing an under-water mission
in which planning is done by a controller above the surface
with which communication is limited.

4 The KP rob Translation
The KP translation by Bonet and Geffner (2011) (Defini-
tion 2) associates the same cost to all actions in the com-
piled planning problem, including assumption and ramifica-
tion actions. As a consequence, there is no preference be-
tween applying any particular type of action in the compiled
problem. As we demonstrate in Example 1, an optimal plan
to KP may be one that favors using a large number of exe-
cution actions rather than applying multiple ramifications or
assumptions.

We seek a solver that can make assumptions, but will pro-
vide a user with the ability to define a desired trade-off be-
tween the execution cost of the generated plan and its robust-
ness. In other words, we want a solver that supports different
levels of deviation from plans with Optimistic-Optimal cost
in favor of plans with increased robustness (which reduce
the need for replanning).

For this, we assign a cost of 1 to execution actions A′exe,
which change the state of the world, and assign a cost of 0 to
ramification actionsA′ram, which represent reasoning about
available information. We assume that reasoning is done
with no overheard and therefore do not consider it when
computing the plan’s cost. We assign a cost C′′as to actions
that represent making assumptions while planning. The user
of the planner will make the choice of what this cost should
be based on the required level of robustness.
Definition 9 (KProb translation). Given a PPO problem
P = 〈F ,A, I, G,O〉 and a cost C′′as ∈ <+ ∪∞ associated
with making assumptions, the KProb translation is defined
from KP = 〈F ′, I ′, G′,A′〉 as the fully observable problem
P ′′ = 〈F ′, I ′, G′,A′, C′′〉 where

C′′(a) =


1 if a ∈ A′exe
C′′as if a ∈ A′as
0 if a ∈ A′ram

Given a plan π̄ that is a solution to the KProb translation,
we letAS(π̄) andEX(π̄) represent the sequence of assump-
tion actions and execution actions in π̄, respectively. We use
|AS(π̄)| and |EX(π̄)| to represent the respective sizes of
these two sequences. Since ramification actions A′ram have
zero cost, the cost of π̄ is C(π̄) = |EX(π̄)|+ C′′as · |AS(π̄)|.
Example 2. To demonstrate the KProb translation, con-
sider Figure 2 [left], which is similar to the setting described
in Example 1, except that cells here can be either ‘free’
(traversable) or ‘occupied’ (non-travesable). The need to
replan occurs when an agent tries to move to an occupied
cell that it previously assumed to be free.

The agent starts at the cell marked by ‘Start’ and its goal
is the cell marked by ‘Goal’. At the initial state, the agent
knows all cells are ‘free’, except for the cells marked by ‘?’,
for which the agent does not know the true value. Figure 2
[right] depicts five possible plans (P1 to P5) the agent may
choose to follow (for clarity, we depict only the prefixes of
the plans, which all continue by moving up to the fifth row,
and left to the goal when relevant).

Plan P1 represents an OP-Rob plan since it minimizes
the cost to goal (its execution cost is equal to COO(P)),
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Figure 2: Demonstrating the KProb translation

while making the minimum number of assumptions (in this
example, it is the only plan that minimizes execution cost).
The solution to KProb that corresponds to P1, called π̄1,
includes 7 actions; 4 execution actions in A′exe that move
up to the goal and 3 assumption actions in A′as (corre-
sponding to the assumptions that cells (A, 2), (A, 3), and
(A, 4) are ‘free’). According to Definition 9, the cost of π̄1

is C(π̄1) = 3+4·C′′as. Similarly, plan P4 represents an EXE-
Rob plan since it is the shortest plan among the plans to the
goal that minimizes the number of assumptions. The solu-
tion to KProb that corresponds to P4, called π̄4, includes 10
execution actions in A′exe and no assumption actions. The
cost of π̄4 is C(π̄4) = 10. As we will see below, the choice
of which plan is returned by an optimal planner (that selects
a plan that minimizes the total cost) can be controlled by
setting the cost of assumptions C′′as.

4.1 Theoretical Analysis
This analysis has several objectives. First, we describe the
relationship between assumptions that are part of a solution
to the KProb compilation and the robustness of the plan it
represents. We then discuss the relationship between the
cost C′′as associated with the assumptions and a guaranteed
bound on the level of robustness of an optimal solution to
KProb. Finally, we specify values to assign to C′′as in order
to guarantee a specific level of robustness.

Let |b| be the size of a belief b. Lemma 2 shows that for
any solution π̄ to the KProb translation of a PPO problem a
lower bound on its robustness is induced by the number of
assumption actions in the solution.

Lemma 2. Given a PPO problem P , a cost C′′as ∈ <+ ∪∞,
and any solution π̄ to KProb,

RP(EX(π̄), b0) ≥ |b0|
2|AS(π̄)|

Proof. Each assumption action in A′as sets the value of an
unknown Boolean variable in F , so each assumption action
a ∈ AS(π̄) in the set of assumptions made in a solution π̄
may remove half of the states in a given belief.

Next, we focus on optimal solutions to KProb and show
that if C′′as > 0, their robustness can be directly computed by
the number of assumptions in the plan.

Corollary 1. Given a PPO problem P , a cost C′′as ∈ <+ ∪
∞, and an optimal solution π̄∗ to KProb, if C′′as > 0 then

RP(EX(π̄∗), b0) =
|b0|

2|AS(π̄∗)|

Proof. From Lemma 2, we know that RP(EX(π̄∗), b0) ≥
|b0|

2|AS(π̄∗)| . Assume to the contrary that RP(EX(π̄∗), b0) >
|b0|

2|AS(π̄∗)| . This means that there exists at least one assump-
tion action a ∈ AS(π̄∗) that can be removed while yield-
ing the same execution cost but higher robustness. This
in turn means that there is a different solution π̄ for which
EX(π̄) = EX(π̄∗) and |AS(π̄)| ≤ |AS(π̄∗)| − 1. How-
ever, according to Definition 9 such a plan will have a lower
cost than π̄∗, contradicting our assumption that π̄∗ is an op-
timal solution and concluding our proof.

Corollary 1 provides a way to compute the robustness of
an optimal solution to KProb. We now specify values for the
cost of assumptions to achieve a desired level of robustness.
For this purpose, we use a solution π̄opr to KProb that rep-
resents an OP-Rob solution to P . According to Definition
7, this means that EX(π̄opr) is an OP-Rob plan to P , for
which the cost is COO(P). For now, we assume that such a
solution is available. Later, in Theorem 2, we show how to
compute it.

Lemma 3. Given a PPO problem P , a cost C′′as ∈ <+ ∪∞,
and an optimal solution π̄∗ to KProb,

|EX(π̄∗)| − |EX(π̄opr)| ≤ C
′′

as · (|AS(π̄opr)| − |AS(π̄∗)|)
where π̄opr is a solution to KProb that corresponds to an
OP-Rob plan of P .

Proof. According to Definition 9, for any PPO problem P ,
the cost of any solution π̄ to KProb is |EX(π̄)| + C′′as ·
|AS(π̄)|, which consists of the cost |EX(π̄)| of its execution
actions (equivalent to the number of actions since actions in
A′exe cost 1) and the cost of its assumption actions AS(π̄),
which cost C′′as each (ramification action have no cost).

Assume to the contrary that

|EX(π̄∗)| − |EX(π̄opr)| > C
′′

as · (|AS(π̄opr)| − |AS(π̄∗)|)
Therefore,

|EX(π̄∗)|+C
′′

as·|AS(π̄∗)| > |EX(π̄opr)|+C
′′

as·(|AS(π̄opr)|
This means that π̄opr is a solution to KProb with a lower

cost than π̄∗, thus contradicting our assumption that π̄∗ is an
optimal solution to KProb.

Lemma 2 and Corollary 1 allow computing a lower bound
on the robustness of any solution to KProb and the exact ro-
bustness of an optimal solution given a cost associated with
assumptions, respectively. Lemma 3 shows the maximum
bound on the diversion from the minimum execution cost
COO(P) for a given cost C′′as assigned to assumptions.

To show how KProb can be configured to account for
various robustness requirements, we prove that the diver-
sion from COO(P) of an optimal solution π̄∗ to KProb is
bounded by the maximum total cost of all possible assump-
tions.
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Theorem 1. Given a PPO problemP , a cost C′′as ∈ <+∪∞,
and an optimal solution π̄∗ to KProb,

0 ≤ |EX(π̄∗)| − |EX(π̄opr)| ≤ C
′′

as ·
|A′as|

2

where π̄opr is a solution to KProb that corresponds to an
OP-Rob plan of P .

Proof. The fact that 0 ≤ |EX(π̄∗)|−|EX(π̄opr)| is a direct
consequence of Lemma 1, which shows that there is no plan
with a cost lower than |EX(π̄opr)|. For the other inequality,
assume by contradiction that

|EX(π̄∗)| − |EX(π̄opr)| > C
′′

as ·
|A′as|

2

Since the set of assumptions A′as contains an action for
each possible value of the fluents in P and only one value
can be assigned to each variable, the maximum number of

assumptions that can be made in a plan is |A
′
as|
2 . If the

maximal number of assumptions are applied, at least one
Optimistic-Optimal plan, for which the cost is |EX(π̄opr)|,
is executable. Therefore, any plan π̄ for which |EX(π̄)| −
|EX(π̄opr)| is larger than C′′as ·

|A
′
as|
2 will not be an optimal

solution to KProb, thus contradicting our assumption.

Theorem 1 shows the relationship between the divergence
from the minimum cost of the generated plan and the cost
associated with making assumptions. Specifically, it al-
lows the user to set the cost of assumptions in a way that
guarantees a specified bound on the allowed diversion from
Optimistic-Optimal cost. At one extreme, by setting C′′as
and the allowed diversion from Optimistic-Optimal cost to
zero, KProb supports agents that want to follow minimum
cost plans and are indifferent to robustness. At the other ex-
treme, by excluding assumptions from the model, equivalent
to assigning infinite cost to C′′as, KProb supports conformant
agents that are only willing to follow plans that are guar-
anteed to succeed. KProb also supports any intermediate
requirement between these two extremes.

We focus on two interesting special cases in this range
and specify conditions under which KProb is guaranteed to
produce OP-Rob and EXE-Rob plans.

Theorem 2. Given a PPO problemP , a cost C′′as ∈ <+∪∞,
and an optimal solution π̄∗ to KProb, if 0 < C′′as < 2

|A′as|
,

then EX(π̄∗) is an OP-Rob plan for P .

Proof. Recall from the proof to Theorem 1 that the maxi-
mum number of assumptions that can be made in a plan is
|A
′
as|
2 . Since 0 ≤ C′′as < 2

|A′as|
, for any plan π̄ of KProb,

0 ≤ C
′′

as · |AS(π̄)| ≤ C
′′

as ·
|A′as|

2
<
|A′as|

2

2

|A′as|
= 1 (1)

i.e. the maximum total cost of assumptions is strictly smaller
than 1.

Turning now to the statement of the theorem, assume by
contradiction that EX(π̄∗) is not an OP-Rob plan for P .

According to Definition 7, this means that either (1) there is
a plan that achieves the goal with a smaller execution cost;
or (2) there is a plan with the same execution cost that re-
quires making fewer assumptions. We will consider these
two cases separately.

If condition (1) holds, then there exists a plan π̄ s.t.
|EX(π̄)| < |EX(π̄∗)|. Since π̄∗ is an optimal solution to
KProb, we know that

|EX(π̄∗)|+ C
′′

as · |AS(π̄∗)| ≤ |EX(π̄)|+ C
′′

as · |AS(π̄)|

and therefore

|EX(π̄∗)| − |EX(π̄)| ≤ C
′′

as · (|AS(π̄)| − |AS(π̄∗)|)

Given our assumption that |EX(π̄)| < |EX(π̄∗)| and
knowing that the minimum difference is at least 1 (the cost
of a single execution action), we have that

1 < |EX(π̄∗)| − |EX(π̄)| ≤ C
′′

as · (|AS(π̄)| − |AS(π̄∗)|)

Specifically, 1 < C′′as · (|AS(π̄)| − |AS(π̄∗)|). Since

the maximum number of assumptions is |A
′
as|
2 , we have that

|AS(π̄)| − |AS(π̄∗)| ≤ |A
′
as|
2 and therefore

1 < C
′′

as · (|AS(π̄)| − |AS(π̄∗)|) ≤ C
′′

as ·
|A′as|

2

However, from Equation (1), we know that C′′as ·
|A
′
as|
2 < 1,

hence reaching the contradiction 1 < C′′as ·
|A
′
as|
2 < 1.

If condition (2) holds, then there exists a plan π̄ s.t.
|EX(π̄)| = |EX(π̄∗)| and |AS(π̄)| < |AS(π̄∗)|. However,
since π̄∗ is an optimal solution to KProb, we know that

|EX(π̄∗)|+ C
′′

as · |AS(π̄∗)| ≤ |EX(π̄)|+ C
′′

as · |AS(π̄)|

Since |EX(π̄)| = |EX(π̄∗)|, this means that

C
′′

as · |AS(π̄∗)| ≤ C
′′

as · |AS(π̄)|,

and therefore, |AS(π̄∗)| ≤ |AS(π̄)|, which contradicts the
assumption, and concludes the proof.

Theorem 2 shows that an OP-Rob plan can be obtained
by setting a small cost to each assumption. An OP-Rob plan
is useful to compute the robustness bound of a solution to a
KProb translation of a PPO planning problem, as specified
in Lemma 3. It is also useful in a variety of applications
where acting in the real world is expensive but replanning
can be done efficiently.

To conclude the theoretical analysis, we show how an
EXE-Rob plan can be acquired by setting the cost of an as-
sumption to be higher than the maximum execution cost of
a plan. This is relevant in applications where failure and
replanning are costly.

Theorem 3. Given a PPO problemP , a cost C′′as ∈ <+∪∞,
and an optimal solution π̄∗ to KProb, if |A′exe| < C

′′

as <∞,
then EX(π̄∗) is an EXE-Rob plan for P .
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Figure 3: Results for C-BALLS

Proof. Assume to the contrary that EX(π̄∗) is not an EXE-
Rob plan for P . According to Definition 8, this means that
there exists a solution π̄ to KProb that either (1) includes
fewer assumptions than π̄∗ or (2) makes the same number of
assumptions but includes fewer execution actions. The first
case is not possible since a single assumption costs more
than applying the entire set of execution actions and the cost
of π̄ is strictly smaller than that of π̄∗, contradicting our as-
sumption that π̄∗ is an optimal solution.

In the second case, |EX(π̄∗)| = |EX(π̄)| and |AS(π̄)| <
|AS(π̄∗)|. However, since π̄∗ is an optimal solution to
KProb,

|EX(π̄∗)|+ C
′′

as · |AS(π̄∗)| ≤ |EX(π̄∗)|+ C
′′

as · |AS(π̄)|,

and therefore |AS(π̄∗)| ≤ |AS(π̄)|, thus reaching a contra-
diction and concluding our proof.

From a practical perspective, this theory provides a prin-
cipled way to understand the implications of specific robust-
ness requirements. For example, our approach can be used
to compute in real-time the cost difference between an EXE-
Rob and an OP-Rob plan, to understand the minimum ro-
bustness associated with each option, and to decide how to
act based on available resources.

Example 2 (continued). Returning to Example 2, the total
number of assumptions that can be made is 26 (each un-
known value can be assumed to have one of two values). If
the cost of assumptions is set to be less than 2−5, the optimal
solution to KProb will represent P1, the only OP-Rob plan
in the example. Since this plan requires making 3 assump-
tions, the robustness of P1 is 23. Similarly, if the cost of
assumptions is set to be higher than |A′exe|, plan P4, which
is the minimum cost plan among the plans to the goal that
minimize the number of assumptions, is selected by an op-
timal solver. Since P4 does not include any assumptions,
its robustness is 26. The agent can compute both plans (and

KP KPprud
rob KPmax

rob KPconf
rob

solved time solved time solved time solved time

WUMPUS 0.9 50.14 0.9 399.29 0.9 404.25 0.9 0.76
WUMPUS-KEY 0.75 65.8 0.75 542/3 0.75 601.2 0.75 1.65

UNIX 1.0 2.32 1.0 2.36 1.0 2.36 1.0 0.49
ROCKSAMPLE 1.0 135.70 1.0 316.22 1.0 312.10 1.0 0.27

LOGISTICS 0.8 231.58 0.8 218.22 0.8 222.06 0.8 49.12
C-BALLS 1.0 22.85 1.0 28.43 1.0 25.99 1.0 0.51

TRAIL 1.0 52.07 1.0 52.27 1.0 54.12 1.0 25.97

Table 1: Completed problems and computation time (in seconds)

Figure 4: Results for WUMPUS

any intermediate plan) and decide how to act based on the
differences between their execution costs and robustness.

5 Empirical Evaluation
The empirical evaluation of the proposed method focuses on
two objectives. First, having formally shown that the KProb

compilation is guaranteed to produce plans that comply with
the robustness requirement set by the agent, we measure the
computation time overhead of satisfying these guarantees.
We then measure the total execution cost associated with
each robustness level. We make use of seven PPO planning
domains, adapted from Bonet and Geffner (2011) and Al-
bore et al. (2009), and used by (Keren et al. 2020) 2.
• WUMPUS: the setting described in Example 1.
• WUMPUS-KEY: WUMPUS extended with keys, which

need to be collected to achieve the goal destination. The
initial position of the keys is not known.

• COLOR-BALLS: the agent navigates a grid to deliver
balls of different and initially unknown colors to their per-
color destinations. The agent can sense the color of the
balls in its current cell.
2Our benchmark set, code, and results can be found in

https://github.com/sarah-keren/krob-kr-2020
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• TRAIL: the agent must follow a trail to reach a destina-
tion, while sensing the reachable cells surrounding it.

• LOGISTICS: trucks transport packages to their destina-
tions. Sensors reveal the packages in a location.

• LOGISTICS-I: same as LOGISTICS but with additional
dependencies regarding package locations (e.g., either
package A or package B are in location 1).

• UNIX: a user wants to transfer a file to a specific location
without knowing its initial location in a folder tree.

• FREESPACE: a robot navigating in an environment using
an occupancy grid in order to reach some destination cell.
It can sense walls from adjacent cells.

5.1 Computation Time
Setup. We use the K-replanner (Bonet and Geffner 2011)
as the agent’s solver, using Fast-Downward (Helmert 2006)
with A∗ and the hmax heuristic (caching precomputed val-
ues) to compute optimal plans. We used optimal solutions in
order to provide the robustness guarantees we specify above.
We compare KP (Bonet and Geffner 2011) with 3 varia-
tions of KProb discussed in Section 4: KPprud

rob (Keren et
al. 2020) that finds OP-Rob plans (Definition 7), KPmax

rob

that finds EXE-Rob plans (Definition 8), and KPconf
rob that

finds conformant plans (with no assumptions). All evalua-
tions were performed on an Intel “Cascade Lake” machine
with 64 GB memory allocated per domain and a 15 minutes
time limit. To compare running times, we use 80 instances
of each domain, where instances vary both in their initial
state and initial belief.
Results. Table 1 compares the ratio of instances solved
(solved) by each approach, and the average total running
time (including planning and execution) in seconds (time)
for instances solved by all approaches. The running time
of both the KPprud

rob and KPmax
rob approaches is higher than

the KP and KPconf
rob approaches, but the maximal run-

ning time difference (for WUMPUS and WUMPUS-KEY)
is only about 8 times higher, and similar in all other do-
mains. Moreover, all approaches achieve the same ratio of
completed problems, showing that guarantees on plan ro-
bustness can be acquired efficiently. Consequently, the dif-
ferent compilations can be used as a pre-processing stage,
allowing the user to compute the diversion from Optimistic-
Optimal cost incurred for performing plans with higher ro-
bustness. Specifically, conformant solutions can be acquired
quickly to reveal the cost a plan with guaranteed success.

5.2 Robustness and Execution Cost
Setup. To appreciate the effect robustness has on perfor-
mance, we use the same empirical setup as above, but in-
stead of a single setup for each initial state and belief, we
randomly sample 100 initial states for each initial belief
(e.g., distribution of pits in the WUMPUS domain). We use
samples to represent states in the initial beliefs, since the
state space is too big to enumerate exhaustively. For each
setup we measure the total execution cost (physical actions
taken) and the number of replans per execution.

Results. Figures 3 (top) and 4 (top) compare the execution
costs for each approach for an increasing ratio of variables
added to the agent’s initial knowledge for C-BALLS and the
number of obstacles for WUMPUS, respectively (excluding
KPconf

rob since it failed for most instances). The results for
C-BALLS show that for all cases, KPmax

rob ’s increased ro-
bustness leads to a reduction in execution costs. In contrast,
for WUMPUS, KPprud

rob achieved the lowest costs. To inves-
tigate this trend, we compare the number of replans for each
approach (Figures 3 (bottom) and 4 (bottom)). The results
for C-BALLS indicate that while KPmax

rob uses the avail-
able information to generate plans that may have a higher
cost than the Optimistic-Optimal plans followed by KP and
KPprud

rob , it avoids the need to replan on more instances,
which explains the reduced overall execution cost. Another
interesting observation for C-BALLS is that execution cost
might increase by giving more information to the agent (and
reducing the size of its belief). This may happen if the added
information misleads the agent to follow a plan that fails.
While it is beyond the scope of this paper, it is an interesting
trend to investigate.

6 Conclusion
We have presented a new approach to online planning for
PPO problems. As an extension of Bonet and Geffner’s
(2011) KP compilation, the KProb compilation can be used
to produce solutions that provide guarantees in regard to a
user-specified level of robustness, a measure that we use to
quantify a plan’s ability to avoid failure. We evaluate our
approach on a set of standard benchmarks and show that
KProb plans can be computed efficiently and reduce exe-
cution cost by reducing the need for replanning.

We have used robotic domains as motivation, but the
KProb approach is relevant to a variety of real-world ap-
plications where different users may have different perfor-
mance criteria and can benefit from the ability to trade-
off between execution cost and robustness. Such applica-
tions include navigation applications, where KProb offers
the user the option to specify to what extent she is willing
to follow a longer but more reliable route to her destina-
tion. Another example is a supply-chain application that can
allow a decision maker to quickly determine the benefit ob-
tained by adopting a costlier but less risky fulfillment plan.

Across various applications, the planning space can be ex-
tremely complex, making it necessary to use abstract and
simplified representations of the underlying planning prob-
lem in order to quickly compute solutions. In particular,
non-deterministic sensor models such as those adopted here
can provide a simplified representation of probabilistic sen-
sor models, allowing efficient computation in that setting.

It would also be of interest to extend the present ap-
proach to accommodate probabilistic inference and robust
planning in the setting of Partially Observable Markov De-
cision Processes (POMDPs) (Kaelbling, Littman, and Cas-
sandra 1998). This will require extending the robustness
measure to account for the probability that plans will suc-
ceed and the generation of robust plans that are most likely
to achieve the goal.
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