Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

SAT-Based ATL Satisfiability Checking

Magdalena Kacprzak', Artur Niewiadomski’, Wojciech Penczek?

Bialystok University of Technology, Bialystok, Poland
2Siedlce University, Faculty of Exact and Natural Sciences, Siedlce, Poland
3Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
m.kacprzak @pb.edu.pl, artur.niewiadomski @uph.edu.pl, penczek @ipipan.waw.pl

Abstract

Synthesis of models and strategies is an important task in
software engineering. The main problem here consists in
checking the satisfiability of formulae expressing the speci-
fication of a system to be implemented. This paper puts for-
ward a novel method for deciding the satisfiability of formu-
lae of Alternating-time Temporal Logic (ATL) under perfect
and imperfect information. The method expands the one for
CTL exploiting SAT Modulo Monotonic Theories (SMMT)
solvers. Our tool MSATL combines SMMT solvers with two
ATL model checkers: MCMAS and STV. This is the first
ever tool for checking the satisfiability of imperfect informa-
tion ATL. The experimental results show that our approach
is quite efficient and quickly checks the satisfiability of large
ATL formulae being out of reach of the existing approaches.

1 Introduction

The problem of synthesis is a very important issue in the
rapidly-growing field of artificial intelligence and modern
software engineering (Jones et al. 2012; Kouvaros, Lomus-
cio, and Pirovano 2018; Schewe and Finkbeiner 2007). The
aim is to automatically develop highly innovative software,
also for Al robots, chatbots or autonomous self-driving ve-
hicles. The problem consists in finding a model satisfying a
given property, provided the property is satisfiable. Finally,
the model is transformed into its correct implementation.

A convenient formalism to specify the game-like interac-
tion between processes in distributed systems is Alternating-
Time Temporal Logic (ATL) (Alur, Henzinger, and Kupfer-
man 1997). The interpretation of ATL formulae uses the
paradigm of multi-agent systems (MAS) and is defined in
models like concurrent game structures or interpreted sys-
tems. This logic was introduced to reason about the strate-
gic abilities of agents and their groups. The strategic modal-
ities allow for expressing the ability of agents to force their
preferences or to achieve a desired goal and are therefore

The work of M. Kacprzak was supported by the Bialystok
University of Technology, as part of the research grant WZ/WI-
IIT/1/2019 of the Faculty of Computer Science and funded by Min-
istry of Science and Higher Education, Poland. W. Penczek ac-
knowledges support from Luxembourg/Polish FNR/NCBIR project
STV and CNRS/PAS project PARTIES.

539

suitable for describing properties like the existence of a win-
ning strategy. This is particularly important when we study
properties and verify the correctness of security protocols or
voting systems. There are a lot of papers analysing different
versions of ATL (Belardinelli et al. 2019a; Dima and Tiplea
2011; Schobbens 2004; Bulling, Dix, and Jamroga 2010;
Dima, Maubert, and Pinchinat 2014; Jamroga, Knapik, and
Kurpiewski 2017) and other modal logics of strategic abil-
ity (Chatterjee, Henzinger, and Piterman 2010; Mogavero et
al. 2012a; Mogavero et al. 2012b). However, there is still
a need for developing and introducing new and innovative
techniques for solving synthesis and satisfiability problems
(Bloem, Konighofer, and Seidl 2014; Bloem et al. 2012;
Finkbeiner and Schewe 2013; Kupferman and Vardi 2005).
This is because these problems are hard and their solutions
require searching for efficient practical algorithms.

1.1 Contribution

Our contribution consists in: (1) introducing a novel tech-
nique for checking the ATL satisfiability by applying, for
the first time, SAT Modulo Monotonic Theories solvers, and
(2) offering a method and a tool for testing the satisfiability
in the class of models that meet given restrictions, for differ-
ent classes of multi-agent systems and ATL semantics, and
for the first time for imperfect information strategies.

1.2 Related Work

The problem we are solving is how to decide whether an
ATL formula is satisfiable. We call this decision problem
ATL;SAT (ATL;SAT) for imperfect (resp. perfect) infor-
mation semantics of ATL. The complexity of ATL;SAT
is very high (as discussed below) and the complexity of
ATL,;SAT is unknown, which makes non-symbolic ap-
proaches inefficient. The complexity of ATL;SAT was first
proved to be EXPTIME-complete (van Drimmelen 2003;
Goranko and Drimmelen 2006) for a fixed number of agents
and later extended to the general case in (Walther et al.
2006). The satisfiability of perfect information ATL*, a
generalisation of perfect information ATL, was proved to
be 2EXPTIME-complete (Schewe 2008). These results em-
ploy alternating tree automata - based techniques. A prac-
tically implementable tableau-based constructive decision
method for ATL;SAT was described in (Goranko and Shka-
tov 2009). Subsequently, the tableau-based method was ex-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

tended for checking ATL* (David 2015) and ATEL (Belar-
dinelli 2014), an epistemic extension of ATL. The com-
plexity (and even decidability) of ATL,SAT is unknown.
Perhaps a hint of its difficulty is given in (Schobbens 2003;
Jamroga and Dix 2006), where it is shown that the problem
of model checking of ATL with imperfect information is
AP -complete but the logic has no standard fixed-point char-
acterisation (Bulling and Jamroga 2011; Dima, Maubert,
and Pinchinat 2015).

The previous existing solutions are applicable only to
perfect information ATL. Our tool is dedicated for both
variants of ATL. For this purpose, we adopt the method
based on SAT Modulo Monotonic Theories (SMMT) used
to search for models of CTL formulae. This technique was
introduced in (Bayless et al. 2015) for building efficient lazy
SMT solvers for Boolean monotonic theories. Next, the
SMMT framework was used to build an SMT solver for
CTL model checking theory and applied to perform effi-
cient and scalable CTL synthesis (Klenze, Bayless, and Hu
2016). In this paper we go one step further by developing an
SMMT solver for ATL formulae and show how to construct,
often minimal, models for them.

We compare our experimental results with results of the
TATL tool (David 2015). Due to the lack of benchmarks for
ATL we compare runtimes on random formulas only. TATL
implements a tableau-based decision procedure and is the
first tool for deciding satisfiability of ATL*. The formulas of
the logic are interpreted in Concurrent Game Models (CGM)
with perfect recall and perfect information semantics. The
main idea behind TATL is to build, step by step, from an
initial formula ¢, a rooted directed graph from which it is
possible to extract a CGM satisfying ¢. The other tool for
testing satisfiability of formulae expressed in several logics
is Coalgebraic Ontology Logic Reasoner (COOL) (Haus-
mann, Schréder, and Egger 2016), which allows verification
of alternation-free fragments of relational, monotone, and
alternating-time p-calculi and implements a tableau-based
global caching algorithm. However, as to the multi-agent
systems, COOL supports only Coalition Logic (Pauly 2002)
which lacks the temporal dimension and therefore does not
allow for inference about the system dynamics — the aspect
which is the most interesting for us. The main advantage
of our framework consists in promising preliminary experi-
mental results and the fact that we can test ATL;SAT and
ATL;SAT in classes of models under given restrictions.
Restrictions on the number of agents and their local states
for ATL;SAT result directly from the finite model property
(Goranko and Drimmelen 2006). The analogous result for
ATL,;SAT is unknown.

Strategy Logic (SL) extends ATL, and express relevant
concepts such as Nash equilibria or Pareto optimality (Belar-
dinelli et al. 2020). Several semantical subclasses of MAS
has been identified for which model checking for SL is de-
cidable. The efficient verification algorithms have been de-
veloped for: One-Goal SL (Cermék, Lomuscio, and Murano
2015); SL with Simple Goals, where goals are restricted to
simple LTL formulae (Belardinelli et al. 2019b); SL with
Knowledge for memoryless MAS with incomplete informa-
tion (Cermdk et al. 2018); SL for MAS with imperfect in-

540

formation and public actions, i.e., systems where all actions
are visible to all agents (Belardinelli et al. 2017); imperfect-
information SL, where the restriction is to a syntactical class
of “hierarchical instances” (Berthon et al. 2017). We plan to
extend our tool to deal also with the above formalisms.

1.3 Outline of the Approach

Our goal is to build a model for a given formula ¢ or to
show that no model exists wrt. some class of models. To
this end a model is represented symbolically by a set of
symbolic variables, encoding its global states, the transition
function and the valuation function. Over these variables a
predicate is defined which is satisfied only by (binary) val-
ues representing the model satisfying ¢. So, the problem is
translated to searching for these values. The search process
starts with introducing a partial valuation function assigning
values to selected variables and setting some restrictions on
the class of models. Then the searching algorithm extends
the partial valuation function until all variables are assigned
values. The total valuation function constructed defines the
model. If this is not a model of ¢, then the algorithm with-
draws some of the previous assignments. If the predicate is
monotonic, techniques for monotonic theories allow to sig-
nificantly shorten the searching process and early reject a
large number of valuations.

The search for a valuation that satisfies the predicate
exploits a lazy SMT (SAT Modulo Theory) solver, which
combines a SAT solver with a set of theory solvers. The
satisfaction-checking process relies on two important tech-
niques provided by theory solvers: (a) theory propaga-
tion that takes a partial truth assignment M,,,, to the the-
ory atoms and checks if the valuation of any other atoms
are implied by that partial assignment, or if the partial as-
signment constitutes a conflict; (b) clause learning, where
given a conflict, the theory solver finds a subset of M,
sufficient to imply the conflict, which the SAT solver can
then in turn negate and store as a learned clause. A lim-
itation of SMT solvers is that the efficient algorithms for
deciding satisfiability are available for fully specified in-
puts, but not for partially specified or symbolic inputs.
This is different with monotonic theories and SAT Modulo
Monotonic Theories (SMMT) solvers (Bayless et al. 2015;
Klenze, Bayless, and Hu 2016). In this case, for a given
partial truth assignment two completions can be defined: (a)
one in which all the unassigned atoms are assigned to false,
call it My ,4er, and (b) one in which they are assigned to
true, call it M, What is more, these completions define
a subclass of models. Next, a superset of all states satisfying
 in some model of this subclass, can be determined. If the
fixed initial state ¢ does not belong to this set, then there is
no model of ¢ in this subclass.

Furthermore, the search process is performed by an
SMMT solver, which exploits both a SAT solver and an
ATL model checker. For ATL; (perfect information ATL)
we use one of the most popular model checker tools, i.e.,
MCMAS (Lomuscio, Qu, and Raimondi 2017), as well as
our own implementation of fixpoint based model-checker
for ATL (Niewiadomski et al. 2020). We use STV -
the most recent tool dedicated to ATL; (imperfect infor-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

mation ATL) (Kurpiewski, Jamroga, and Knapik 2019;
Jamroga et al. 2019).

Due to the upper bound we can - in the worst case -
check every model consistent with the requirements. Us-
ing SAT-like algorithm we have an NP algorithm combined
with a model checking algorithm. So, the complexity of our
method can stay in NP, if the model checking algorithm is
polynomial (ATLy), or is higher if the model-checking pro-
cedure is more expensive (ATL;).

In Sec. 2 we define a multi-agent system and its model,
and give the syntax and semantics of ATL. Sec. 3 defines
Boolean monotonic theory for ATL. In Sec. 4 the approxi-
mation algorithm is given and its properties are proved. Sec.
5 introduces the algorithm for deciding ATL satisfiability.
Sec. 6 and 7 present experimental results and conclusions.

2 MAS and ATL

Alur et al. introduced the ATL logic taking into account dif-
ferent model compositions of open systems like turn-based,
synchronous, asynchronous, with fairness constraints or
Moore game structures. In this paper we follow Moore syn-
chronous models (Alur, Henzinger, and Kupferman 2002),
i.e., assume that the state space is the product of local state
spaces, one for each agent, all agents proceed simultane-
ously, and each agent chooses its next local state indepen-
dently of the moves of the others. This class of models al-
lows for an efficient testing of the ATL satisfiability.

2.1 Multi-agent System
We start with defining a multi-agent system following (Alur,
Henzinger, and Kupferman 2002; Jamroga et al. 2018).

Definition 1. A multi-agent system (MAS) consists of n
agents A = {1,...,n}? where each agent i € A is associ-
ated with a 5-tuple AG; = (L;,1;, Act;, P;, T;) including:

e a finite set of local states L; = {I},1?,...,11"};
e an initial local state +; € L;;
e a finite set of local actions Act; = {e;,al,a?,...,al""};

e a local protocol P; : L; — 24 selecting the actions
available at each local state, where ¥, ¢, P;(1;) # 0;

e a (partial) local transition function 7; : L; x Act; — L;
such that T; (1;, a) is defined iff a € P;(l;) and T;(1;,¢;) = 1;
whenever ¢; € P;(l;) for each l; € L;.

We consider synchronous multi-agent systems, where
each global action is a n-tuple (a', ..., a") with a’ € Act;,
i.e., each agent performs one local action. To describe the
interaction between agents, the model for M AS is defined.

Definition 2 (Model). Let Act = Acty X --- X Act,, be the
set of all global actions, PY be a set of the propositional
variables, and M AS be a multi-agent system with n agents.
An (induced) model, is a 4-tuple M = (St, 1, T, V') with

o the set St = Ly X - -- X Ly, of the global states,

e an initial state Lt = (11, ..., t,) € St,

o the global transition function T' : St x Act — St, such
that T(s1,a) = so iff Ti(si,a') = sb for all i € A,

The environment component may be added here with no tech-
nical difficulty.

541

where for global state s = (l,...,l,) we denote the lo-
cal component of agent i by s* = l; and for a global action
a=(a,...,a"™), a’ is the local action of agent i.

o the valuation of the states V : St — 27V,

We say that action a € Act is enabled at s € St if
T(s,a) = s for some s’ € St. We assume that at each s €
St there exists at least one enabled action, i.e., for all s € St
exist a € Act, s’ € St, such that T'(s,a) = s’. An infinite
sequence of global states and actions T = spagsi1ai Sz . ..
is called a path if T(s;,a;) = s;41 for every i > 0. Let
Act(m) = apajaz ... be the sequence of actions in 7, and
m[i] = s; be the i-th global state of 7. II;(s) denotes the
set of all paths in M starting at s.

2.2 Alternating-time Temporal Logic

Alternating-time temporal logic, ATL (Alur, Henzinger, and
Kupferman 1997; Alur, Henzinger, and Kupferman 1998;
Alur, Henzinger, and Kupferman 2002) generalizes the bran-
ching-time temporal logic CTL (Clarke and Emerson 1981)
by replacing the path quantifiers E, A with strategic modal-
ities {(T')). Informally, (I'))y expresses that the group of
agents I' has a joint strategy to enforce the temporal prop-
erty . The formulae make use of temporal operators: “X ”
(“next”), “G” (“always from now on”), U (“strong until”).

Definition 3 (Syntax of ATL). In vanilla ATL, every oc-
currence of a strategic modality is immediately followed by
a temporal operator. Formally, the language L of ATL is
defined by the following grammar: ¢ :=p | —p | @ A ¢ |
(IHX @ [(TheUep [(THGe.

Let M be a model. A strategy of agenti € Ain M is a
conditional plan that specifies what ¢ is going to do in any
potential situation.

In this paper we focus on memoryless perfect and imper-
fect information strategies. Formally, a memoryless perfect
information strategy for agent i is a function o;: St — Act;
s.t. 0;(s) € P;(s') foreach s € St. A memoryless imperfect
information strategy additionally satisfies o;(s) = o;(s’)
whenever s* = (s')". Following (Schobbens 2004), we refer
to the former as I-strategies, and to the letter as i-strategies.
Thus, a perfect information strategy can assign different ac-
tions to any two global states, while under imperfect infor-
mation the agent’s choice depends only on the local state
of the agent. A joint strategy or for a coalition I' C A
is a tuple of strategies, one per agent ¢ € I'. We denote
the set of I"s joint memoryless perfect (resp. imperfect)
information strategies by YL (resp. ¥L). Additionally, let
or = (o1,...,0%) be a joint strategy for T = {i1,...,4x}.
For each s € St, we define or(s) == (01(s),...,01(s)).
Definition 4 (Outcome paths). Let Y € {I,i}. The out-
come of strategy or € E%/ in state s € St is the
set outprr(s,or) C Mp(s) s ™ = spagsiar--- €
outp(s,or) iff so = sand Vi € NVj € T, a] = o;(rli])
forY =1 and a] = o;(n[i]?) forY =1i.

Intuitively, the outcome of a joint strategy or in a global

state s is the set of all the infinite paths that can occur when
in each state of the paths agents (an agent) in I' execute(s)

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

an action according to or and agents (an agent) in A\ T

execute(s) an action following their protocols.

The semantics of ATL parameterised with the strategy
type Y € {I,i}, is defined as follows:

M,s k=, p iffp e V(s), forp € PV;

M,s e, o iff M, s &, ¢;

M,S ':Y P1 A P2 lffMaS ':y ¥1 and M,S ':y P25

M, s =, (T)X ¢ iff there is a strategy or € ¥ such that
outpr(s,or) # (0 and, for each path 7 € outps(s,or),
we have M, m =, X p,i.e., M,7[l] &, ¢;

M,s =, (T)p1Ups iff there is a strategy or € XX
such that outp(s,or) # @ and, for each path
7w € outp(s,or), we have M, 7 E, ¢1Ups, ie.,
M,n[i] |, 2 forsomei > 0and M,7[j] =, ¢1
forall 0 < j < i

M, s =, ()G iff there is a strategy o € 3Y such that
outpr(s,or) # (0 and, for each path 7 € outps(s,or),
we have M, 7 =, Gy, ie, M,xfi] |, ¢, for every
1> 0.

Definition 5 (Validity). An ATL formula ¢ is Y -valid in M

(denoted M =,) iff M,. =, ¢, i.e, @ is true at the

initial state of the model M under the Y -strategies.

By ATL; and ATL; we denote ATL with the semantics type

Y =Tand Y =i, respectively.

The problem we consider is ATLy SAT with restrictions

on models, for each Y € {I,i}.

3 Boolean Monotonic Theory for ATL
In this section we show how to construct a Boolean mono-
tonic theory for ATL; and ATL; — the foundations of a tool
for testing the satisfiability of the ATL formulae and for per-
forming efficient and scalable synthesis.

3.1 Boolean Monotonic Theory

Consider a predicate P {0,1}"

{0,1}.

We say that P is Boolean positive monotonic
iff P(Sla-~-a5i715075i+1;-~-a5n> = 1 1mplles
P(Sl,...751'_1,1,81‘4_1,...75”) = 1, for all
1 < ¢ < n. P is called Boolean negative mono-
tonic iff P(s1,...,8i-1,1,8i+1,...,8,) = 1 implies
P(Sl,...751'_1,0,81‘4_1,...75”) = l,foralll S) S n.

The definition of (positive and negative Boolean)
monotonicity for a function F {0,1} 29
(for some set S) is analogous. F' is Boolean posi-
tive monotonic iff F(s1,...,8i-1,0,841,...,8n) C

F(Sl,.. -781‘—1,178i+1,-- .,sn),forall 1 <) <n.
A function F is Boolean negative mono-
tonic iff F(s1,...y8i-1,1,8i41, ..., 5n) C
F(Sl,.. '7Si—17078i+17" .,sn),forall 1<1<n.

Definition 6 (Boolean Monotonic Theory). A theory T with
a signature Q = (S, S¢, Sy, ar), where S is a non-empty set
of elements called sorts, Sy is a set of function symbols, S,
is a set of relation symbols, and ar is the arity of the relation
and function symbols, is (Boolean) monotonic iff the only
sort in Q) is Boolean, and all predicates and functions in §2
are monotonic.

542

3.2 Boolean Encoding of ATL Models

First, we make some assumptions about MAS. Given a set
of agents A = {1,...,n}, where each agent i € A has a
fixed set of the local states L; = {l},...,!"} and a fixed
initial local state ¢; € L;. Since agent ¢ can be in one of its
n; local states, and a local transition function 7 is restricted
such that it does not involve actions of the other agents, we
can assume, without a loss of generality, that agent ¢ has
exactly n; possible actions, i.e., from each local state it can
potentially move to each of its local states. So, assume that
the set of local actions for agent i is Act; = {a},...,al"}

2 &y
and an action a] can move the agent ¢ from any local state to

local state l{ . Moreover, we assume that each local protocol
P; satisfies that at least one action is available at each local
state. Thus, the local transition function 7; for agent 7 is

defined as follows: T;(I¥,al) = I if] € P;(IF), for any
I¥eLiand1<j<n,.

Next, we represent every single agent 7 with a given
AG; = (L;,t;, Act;, P;, T;) by means of a bit vector. In
fact, under the assumptions discussed above, we have to en-
code a local protocol P; only. It can be defined by a Boolean
table Ip; of |L;| x | Act;| entries, where 0 at position (I¥, a?)
means that the local action a] is not available at the local
state lé‘“, and 1 stands for the availability. This table can
be represented by a bit vector tb; = (Ip;[1],...,Ip;[n:])?,
where Ip;[j] stands for the j-th row of the table Ip;, encod-
ing which local actions are available at which local states.

Since the model M = (St,¢,T,V) induced by a MAS
is a product of AG;, for i € A, the bit vector (tby,...,tb,)
determines the synchronous product of the local transition
functions and thus the global transition function 7" of M.

Finally, we need to define a valuation of the proposi-
tional variables. Given a set PV, a Boolean table of size
|St| x |PV| saves which propositional variables are true in
which global states. Then, let vb = (vby, ..., vb) be a bit
vector, where k = |St| - [PV)], controlling which proposi-
tional variables hold in each global state.

In this way, every model can be represented with a bit
vector. For a fixed number |PV| of the propositional vari-
ables, a fixed number n of agents, a fixed number n; of the
local states of agent ¢, for every ¢ = 1,...,n, the bit vector
vy = (tby, ..., thy,, vdb) encodes some model induced by
MAS without an initial state fixed. Therefore, vy, actually
encodes a family of models differing only in the initial state.

3.3 Predicate Model

From now on, we consider models M defined over the fixed
number |PV| of the propositional variables and a fixed num-
ber n of agents with fixed numbers |L1|, ..., |Ly,| of local
states. Thus, we consider models that can be represented
by a bit vector vy consisting of exactly ny; = |Ly |2+ ...
+|Ln|? +|St|- |PV)] bits. In the rest of the work we will use
the following notation: V,,, = (T'By,...,TB,,V B) to de-
note a vector of Boolean variables, where fori = 1,...,n,

3In what follows, we assume that a sequence of bit vectors is
identified with the bit vector composed of its elements.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

TB; is a vector of |L;|? variables and V B is a vector of
|St| - |PV)| variables.

In order to find a model for a given formula, we apply a
symbolic method that consists in finding the Boolean vector
encoding this model. To this end, for a fixed ¢ € L, g € St,
and Y € {I,i} the predicate M odel; 4(Vin) is defined such

that for the bit vector v,y,
Model;¢(vM) = lifand only if M, g =, ¢.

The search for vy; can be optimized if we use techniques
for monotonic theories. Unfortunately, it turns out that the
above predicate is not monotonic.

Theorem 1. The predicate ModelZ@(Vm) is neither posi-
tive nor negative monotonic w.r.t. V,,, for' Y € {1,i}.

Proof. 1t follows from a similar result for CTL (Klenze,
Bayless, and Hu 2016) as ATL; (ATL;) subsumes CTL. [

However, monotonicity holds for simple subformulae (see
Theorem 2). This fact is used to deal with nested formulae
by recursively breaking them down into simple ones. Thus,
under- and over-approximations (see Sec. 4.1) can be used
instead of enumerating and checking all possible models.

Moreover, a new predicate M App;/) o (Vinas Vi,), for Y €

{1,1}, defined over two vectors, is introduced (see Sec. 5.1).
This predicate is positive monotonic wrt. V,,,, and negative
monotonic wrt. V,,,, and has the property that for every
vector var, M App) s (var, var) = Model} ,(var). To com-

pute MApp;/’(ls(ful, vg) for vectors vy, vy s.t. va[j] < v1[j]

for every j, the algorithm SAppY is used (see Sec. 4.2). It
takes as an input a formula ¢ and a partial model M, (see
Sec. 4.1), and determines an approximation of a set of states
satisfying ¢ in a model M which extends M. This means
that if a state ¢+ does not belong to the approximation, then
it cannot satisfy ¢ in any extension of M,,,,. The property
allows for using a technique for fast and early elimination of
partial evaluations of Boolean variables that cannot be ex-
tended to total valuations encoding a model of the formula.
The assumption that va[j] < v;[j] for every j, ensures that
the vectors are not arbitrary, but encode a partial model. The
S AppY algorithm recursively calculates approximations of
subformulae starting from the most nested ones. Each ap-
proximation is a set of states that can be represented by a
new propositional variable. In this way, we deal with the
non-nested formulas at every stage. Moreover, the algorithm
extends the input partial model to two total models: over
and under and uses a model checker tool to determine the
states satisfying subformulae in these models. The correct-
ness of the algorithm follows from the monotonicity proper-
ties of the functions: solve and M C, which are defined and
proved in the next subsection. The proofs are conducted for
the ATL formulas under the I semantics. The proofs for the
i semantics are omitted since they are exactly the same.

3.4 Functions solve and M C

In order to compute the value of the predicate
Model} ;(var) for a given M and Y € {I,i}, we de-
fine a new function, called solve) (V;,).
returns a set of states of A such that

This function

543

g € solve) (vyr) iff Model) ,(var) = 1
and preserves the following monotonicity properties.
Theorem 2. The function solveq{(Vm), forY € {1,i} is

1. positive monotonic w.rt. VB for ¢ € {p,p A q, (T) X p,
(C)Gp, (T)pUq},
2. negative monotonic w.r.t. VB for ¢ = —p,

3. positive and negative monotonic w.r.t. TB; fori € A if
¢ € {p,~p.pNq},

4. positive monotonic w.rt. TB; for each i € T if ¢ €
{{T)Xp (T)Gp, (I')pUq},

5. negative monotonic w.rt. TB; fori € A\T if ¢ €
{{T) X p, (T)Gp, (T)pUq}, where p,q € PV, T C A
Regardless of the strategy definition, the above properties

hold for perfect and imperfect information semantics what

results from the following observations. Adding a local tran-
sition for some agent A € T, increases its number of local
choices, but the existing strategies remain. Similarly, adding
more states where p € PV holds does not affect pre-existing
strategies involving p. Moreover, deleting a local transition
for agent B ¢ T can reduce only a number of outcome paths
of a strategy or. Notice also that adding or removing lo-
cal transitions does not alter the truthfulness of propositional
formulae. Similarly, adding more states satisfying p does not
affect propositional formulae involving p and reducing the
number of states satisfying p does not affect propositional

formulae involving —p.

To compute solveq’f (Vi) for a formula ¢ and Y € {1, i},
an evaluation function M CY (op, Z1,V,,,) is defined for an
unary operator op and MCY (op, Z1, Z3, V,y,) for a binary
operator op, and Zy, Z, C St. This function evaluates the
operator op on sets of states Z;, Z» instead of the formu-
lae holding in these states. If ¢ = p € PV, then for a
given model M, solve) (v)) returns the set of states of M
in which p holds. Otherwise, solve(};(vM) takes the top-
most operator op of ¢ and solves its argument(s) recursively
using the function MC?Y and applying MC" (op, Z1,var)
or MCY (op, Zy1, Zs,vpr) to the returned set(s) of states.
Notice that MCY (=, Z,v5s) computes the compliment of
Zin M, ie. St \ Z. Similarly, MCY (A, Z1, Zy,var)
computes the intersection of Z; and Zs in M. If op €
{{THX, (THG, (T)U} the model checking algorithms are
used. Now, Theorem 2 can be rewritten by replacing the
propositional variables by the sets of states satisfying them.
Theorem 3. The functions MCY (op, Zy, Vy,) for an unary
operator op and MCY (op, Zy, Z3, Vy,) for a binary oper-
ator op, for Y € {1,i} are: 1. positive monotonic w.r.t.
V B for op e {\,{(T) X ,(T)G, (THU}; 2. negative mono-
tonic w.rt. V B for op = —; 3. positive and negative mono-
tonic w.rt. TB; fori € A and op € {—,\}; 4. positive
monotonic w.r.t. TB; fori € T and op € {{T) X, (I')G,
(TWU}; 5. negative monotonic w.r.t. TB; fori € A\T and
op € {{I)X, (NG, (T)U}.

4 Approximating ATL Models

This section shows how to approximate models for ATL us-
ing SMMT. We start with defining a partial model and over

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

and under approximations. These approximations determine
a class of all models extending the partial model to a to-
tal one. Then, the approximation algorithm is introduced
and its properties are proven. The algorithm computes over-
approximation of the set of all states satisfying the given
formula in some model of the class.

4.1 Construction of M,,., and M, ger

Given a set of agents A = {1,...,n}, following Def. 1
we define a partial protocol function: CP; : L; x Act; —
{0,1,undef}. By a partial MAS, denoted M AScp, we
mean a MAS in which each agent is associated with a partial
protocol rather than with a protocol. Then, a model induced
by M AS¢p together with a partial valuation of the propo-
sitional variables C'V : St x PV — {0,1,undef} is called
a partial model, denoted by M. Both a partial protocol
and a partial valuation, defined to give requirements on the
models, can be extended to total functions.

For each partial model M, total models Mun der and
ML ., forT' C A, are constructed. First, for every agent
i € A we define: a necessary local protocol P; : L; —

24¢ti and a possible local protocol P; : L; — 2‘?2 where:
(D) if CPZ(ZZ, ai) = 1thena; € &(lz) and a; € Pl(ll),
(2) if CPZ(ZI, ai) = (0 then a; g &(lz) and a; ¢ E(ZZ),
3)if CPi(li, ai) = undef then a; ¢ Pl(lz) and a; € E(ll)
Notice that the possible local protocol is an extension of
the necessary local protocol, i.e., for every local state [,
P;(l;) € P;(l;). Similarly, total valuations of the proposi-
tional variables are defined: a necessary valuation V. : St —
2PV and a possible valuation V : St — 2P‘Lsuch that:
()if CV(g,p) = 1 thenp € V(g) and p € V (g),
(2)if CV(g,p) = Othenp & V(g) andp & V(g),
3)if CV(g,p) = undef thenp ¢ V(g) and p € V (g).
Thus, for every global state g € St we have V. (g) C V (g).
The total model M};nde, is defined as in Def. 2 of all
agents i € I' with AG; = (Lj,u;, Act;, P, T;), agents
j € A\T with AG; = (Lj,¢;,Act;, P;,Tj), and for
the valuation of the propositional Varlables K The total
model M}, . is defined as in Def. 2 of all agents i € T’
with AG; = (L;,1;, Act;, P;,T;), agents j € A\ I' with
AG; = (Lj,1j, Act;, P;,T;), and for the valuation of the

propositional variables V.

Definition 7. Let M (St, 0, T,CV) and M’
(St, 1, T,CV') be (partial) models defined over PV and in-
duced by agents A with AG; = (L;,i;, Act;, CP;,T;) and
AG), = (L;, 13, Act;, CP!,T;) for i € A, resp. We say that
M is compatible with M / if M extends M, that is:

° (1) lfCPZI(lZ,al) =1 then CPi(li,ai) =1,
(2) lfCPZ/(l,L, ai) = 0 then OPi(li, a,-) =0,

e (1)ifCV'(g,p) = 1then CV(g,p) = 1,
(2)if CV'(g,p) = 0 then CV(g,p) = 0.

Observe that MY

under

and MY, ., are compatible with M,
and the vectors v r . and v(ynr, uniquely deter-
mine Mg, Spemﬁcally, the elements of a model which

are defined in M,,,, are encoded by Boolean values for

544

which vyye - [j] = v, [5], and for all other values

]#v(M) [7].

Theorem 4. Let a (partial) model M be compatible with a
(partial) model M’ defined over the same agents and propo-
sitional variables, and I" C A. Then, we have:

VDT, e over

e vyyr [I'B;] < wyr [TB;] < wyr, [T'Bi] <
vy, [T'Bi] fori € T, and

® Vo [TB;] > Upr o [TB;] > vymr [TB;] >
v, [TBi] fori € A\T, and

® vynr [VB] < vpT o [VB] < IV [VB] <

ver VBl

where vy [T B is a short for vy [th;[5:]] for all 1 < j; < n;
and vy [V B is a short for vpr[vb;] forall1 < j < k.

Proof. Follows from the construction of over and under
models. O

4.2 Algorithm S App

The heart of the approach is Algorithm 1. For a given strat-
egy type Y € {I,i}, it has on input: an ATL formula ¢, a
(partial) model M, and A parameter, which can have one
of two values over or under. The algorithm returns a set of
states, which for A = under specifies under-approximation
of a set of states satisfying ¢ and for A\ = over determines
the over-approximation of this set. If ¢ = p is a propo-
sitional variable then SAppY (¢, M,) computes a set of
states satisfying p in the total model M j\“. If = —p, then
S AppY (¢, M, \) computes the approximation for a subfor-
mula ¢ performing SAppY (¢, M, \'), where N = under
if A over, and otherwise. Next, the function MCY
determines the compliment of the set SAppY (¢, M, \') in
Mzt If ¢ = (T)X ¢, then SAppY (¢, M, \) computes
the approximation for a subformula ¢ performing Z =
SAppY (o, M,)\) and the function M CY determines the set
of states satisfying (I')) X (kz) in M}, where £ z is a propo-
sitional formula satisfied only by states belonging to Z. In
fact, M CY has a set of states as its input, not a formula. This
technique allows calculations of approximations for formu-
las with nesting of various coalition operators. For other
operators, the algorithm works similarly.

Theorem 5. Let My, and M

par
els s.t. Mpq, is compatible with

{Li}, SAppY (¢,
and S AppY (¢, M

be two (partial) mod-
M’ Then, for Y €

par:

pm«,O’UGT‘) g SApp ((b parvover)
under) C SAppY (¢, Mpar, under).

para

Proof. By a structural induction on a formula ¢. It is the
same for both semantics: ¥ = I and ¥ = i. We show
the first case. Since M, is compatible with M, ,,. then
ong,, i < vawe,,] and vye] < oy]
forany I'and j € {VB,TB;} withi € I"and vpr [j] >
v, 3] and veane] > vyyr - [f] for any T' and
j=TB; withi € A\T.
The base case. If ¢ = p € PV, then from the definition of
the algorithm, SApp! (p, Mpa,, over) returns the set of the
states satisfying p in M., and SApp! (p, (M")par, over)

over

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Algorithm 1 Algorithm S AppY
Input: ¢, Myqr, A
Output: a set of states

1: if ¢ € PV then

2: return {g € St: Mg}, g =, ¢}

3: elseif ¢ = op(¢)) then

4: ifopis — then //negative monotonic
5: if A = over then

6: Z = SAppY (¢, Mpayr, under)
7: return MCY (op, Z, vp4)

8: else e

9: Z = SAppY (¢, Mpqr, over)
10: return MOY(op, Z UM(;‘}&T)
11: else //op Ei G}
12: Z = SApp 77[]7 par;)
13: return M CY (op, Z, vpyr)
14: elseif ¢ = op(z/Jl, o) for op e {{(T')U, A} then

15: Zl = SApp ("!)la par7

16: Zy = SApp (’ng, par)

17: ifopis (I'))U then

18: return M CY (op, Z1, Zo, Upr)
19: else //opisA

20: return MCY (op, Z1, Za, vprp)

ln (M/) over:®
pars OVET)
Similarly,

returns the set of the states satisfying p
Thus SApp' (¢, Mpar,over) C SApp! (¢
since vy [VB] < vy, [VBI.

S App! (o, par,under) C SApp! ((b, Mpqr, under) since
/U(A/[,)Ender [VB} S ’UM'Ender [VB].

The induction step. We show the proof for the unary oper-
ators —, (') X, (I'))G. The proofs for the binary operators
Until and A are similar.

Induction assumption (IA): the thesis holds for a formula).
Induction hypothesis (IH): the thesis holds for ¢ = op(v).

o If ¢ = —n).
Let Z

S App" (v, M, par,
Then, MC(=

since MC! for op =

SApp' (¥, Mpar,under) and 2’ =
under), then Z' C Z from IA.
Zouz,) € MO,)
- returns the compliment of Z
and Z’, respectively. Next, MC'(=, 2’ opa) C
MCH(—, 7, VA) since MCT is negative monotonic
wrt. VB and TB; for i € A from Theorem 3. Thus,
MC'I(Z, UpA) c Mc! (=, 2 S UMNA N) and
SApp' (¢, par,over)CSApp (¢,

Let Z

Z s UprA

under

nder

par7ove7")
SApp' (1, Mpar, over) and Z' =
S App! (¢, M,,,,over), then Z C Z' from IA. Then,
MCI(—, 7, vaya.) S MO (=
MCY for op — returns the compliment of Z’
and Z, respectively. Next, MCI(—,Z, VMNA) C

MCI(—, Z, vpA) since MCT is negative monotonic
W.L.L. VB and T'B; for i € A from Theorem 3. Thus,
MCI(A ’U(M/)glver) g MC (Z IUMS‘};er) and

s 2y V(A) since

545

S App" (¢, M}y, under) S App" (¢, Mpar, under).
o If ¢ = op(¢) with op € () X, (I')G.

Let Z = SApp'(, Mpar,over) and Z' =
S App! (¢, M}, over), then Z C Z' from IA. Observe that
S App! (¢, Mpar, over) is MC!(op, Z, vy). Similarly,
S App! (9, par,over) is MC(op, 2’ vy,). Since

Z C Z' then MC (op, Z, oy,)CMCI(op, Z' oy).
Next MCI(op,Z’,ngm) C MC(op, Z', U(M)Om)

since MC for op € ()X, ()G is positive monotonic

wrt. VB and TB; for + € T' and negative monotonic
wrt. TB; for i € A\ T from Theorem 3. Finally
MC(op, Z,vyr) S MC'(op, Z',vppyr,) and
S App! (o, par,over)CSApp (¢, My, over).

Let Z = SApp' (¢, Mpar,under) and Z' =
SApp' (¢, M],,,under), then Z' C Z from
IA. Observe that SApp(, Mpar,under) is

MC!(op, Z, vyr).
is MC!(op, 7', V()T
MC(op, 7', U(M’)wdpr) C MO op,Z, Vo).
Next MCI(op, Z, vy) € MC!(op, Z, vyr)
since MC for op € (IT') X, (T')G is positive monotonic
wrt. VB and TB; for ¢ € I' and negative monotonic

wrt. TB; for i € A\ T from Theorem 3. Finally
MCI(op,Z ’U(M/)) c MC(op, Z, vyr) and

S App! (¢, M, undeT)CSApp (¢, Mpar,under) O

Similarly, SApp! (¢, M
). Since Z'

par, over)
C Z then

par’

The algorithm SAppY, for a total model M compati-
ble with a partial model M), computes over and under-
approximation of solveg(vM) for Y € {I,i}. More pre-
cisely, S AppY (¢, Mpar, over) returns a set of states, which
is an over-approximation of solve} b (var). This means that
if 1 € solve(};(vM), then ¢ € SAppY (¢, M,
Clearly, if « & SAppY (¢, Mpar,over), then there is
no model M extending My, such that M,. k=, ¢.
Similarly, SAppY (¢, Mpar, under) computes an under-
approximation of solveg (vpr). This means that if ¢ €
S AppY (¢, Mpar, under) then LGSOl’Ue¢ (var).

Theorem 6. Let M., be a partial model and M be a
total model compatible with Mp,,. Then, for a formula
¢ we have: SAppY (¢, Myar, under) C solve¢ (vp) C

S AppY (¢, Mpqr, over), forY € {1,i}.

par, OVET).

Proof. Follows from Theorem 5 and the fact that
S AppY (¢, M, under) = SAppY (¢, M, over) =
solveg(vM), forY € {I,i}, since M is total. O

S Satisfiability Procedure

Basing on the SMMT framework, we have implemented the
MSATL tool. Our implementation exploits a slightly mod-
ified MiniSAT (Eén and Sorensson 2003) as a SAT-solving
core, and SAppY algorithm as the theory solver for ATL.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

5.1 Monotonic Predicate M App

First, the predicate MApp;id)(le s Vin,), for Y € {I,i}, is
defined such that M App} ,(v1,v2) = 1 iff bit vectors v,
and v, determine a (partial) model Mo, i.e. v2[j] < v1[j]
for all j, and g € SAppY (¢, Mpqr, over). The predicate is
monotonic in the sense that for bit vectors 1)1, vg and vf,
vh such that v4[i] < wsfi] and vy l/ < vl] for all 4, if
MAppg s(v1,02) = 1, then MAppg¢ vl,vz = 1, what
follows from Theorem 5.

Constructing a model that satisfies a formula ¢ is there-
fore reduced to searching for bit vectors vy, v satisfying
predicate M App; (Vi1 Vin,) and such that vy = v. The
searching method starts with two vectors vy, vo such that
valj] < wq[j] for all j and, step by step, makes decisions
about the unification of their values in positions where they
differ. If M App}; s(v1,v2) = 1, then new decisions can be
made (with no guarantee of success). If M App; ¢(v1, vg) =
0, then some previous decisions are withdrawn and the pro-
cess continues. If v; = vy and MApp};(b(vl,vg) = 1, then
v1 represents a model M satisfying ¢, ie. M,g E, ¢

5.2 Satisfiability Tool

Below we describe how the algorithm searching for values
satistying M App; ¢(Vinys Vim,), on the basis of which the
tool solving ATLy SAT with restrictions, is built. For a
fixed Y € {I,1i} the following input and output are defined.

Input: (a) an ATL formula ¢, (b) model requirements de-
termining a partial model My

Output: a model satisfying ¢, meeting the requirements of
M, or the answer that such a model does not exist.

Steps of the algorithm: Let d be an integer variable track-
ing the decision depth of the solver, V,,, be a vector of
Boolean variables over which M App}/d)(le,V,M) is de-
fined, and asg(¢) denote the variable assigned at depth i.

1. Let d := 0. Set values of selected variables of V,,, ac-
cording to the M, requirements.

2. Compute SAppY (¢, Myqy, over).

3. If € SAppY (¢, Mpar, over), then (a) if all variables of
V.. have assigned values and v is the determined vector of
Boolean values, then M Appf%(v, v) = 1. Return the model
represented by v. (b) otherwise: d := d + 1, and the SAT-
solver assigns a value to the variable asg(d) € V,,. In this
way, we have a new partial model M, restricting the class
of the considered models. Go to step 2.

4. If o« & SAppY (¢, Mpar, over), then (a) if d > 0, then
compute a conflict clause, analyse the conflict, undo recent
decisions until appropriate depth ¢, d := ¢, assign the op-
posite value to the variable asg(c), and go to step 2. (b)
if d = 0 there is no model meeting the requirements and
satisfying ¢. Return UNSAT.

Example 1. Let us consider the formula 8 = —p A {(0) X p.
We want to check if (under perfect information semantics)
there is a model for B consisting of two agents with two local
states. Thus, the potential global model has 4 global states.
We allocate 4 symbolic variables for each agent to represent

546

its local transitions (T B), and 4 to encode the proposition
valuation (V' B).

Initially, the SAT solver’s assignment to variables of V B
is empty, and the assignment to variables of T B includes
only the variables representing the self-loops. These are as-
signed true in order to interpret the formula over infinite
paths and to ensure that each agent always can do some-
thing at every state. It determines the initial My, as shown
in Fig. 1. The valuation of variables of T B; is shown as
a matrix. The values at (s,t) determine if the transition
from state s to t is enabled (T true, solid line), disabled
(F false, nothing), or enabled in overapproximation and
disabled in underapproximation (U undefined, dashed line).
The colours of global states represent the valuation of V B
variables: green - the property p holds, black - does not
hold, and yellow - holds in vya , and does not hold in

Iy The double circles denote the initial states.

undcr
We start with computing S App" (8, Mpar, over).
According to Algorithm 1 (line 14) we have:
= SApp! (=p, Mpar., over) =
MCI(_‘v SAppI(pa Mpa’r7 under) U]VIA Hde) =
MCH(=,0,vp4) ={0,1,2,3}, and
= SApp! ({(ON X p, Mpay., over) =
MCI(<<O>>X s SAppI (pa Mparv OU@T), U]Wi,?gr) =
MC((0) X ,{0,1,2,3},v,,000) = {0,1,2,3}*.
Finally, we have the set: MC! (A, Z,, Za,vpa) =210
Zy ={0,1,2,3}. The initial state O belongs to the resulting
set, so it is possible that the partial model My, could be ex-
tended to a model for the formula. The algorithm continues

and the solver assigns a value to some undefined variable.
We obtain a new partial model M ... and proceed again with

par
S App' (8, M}, over).

Assume, that after several assignments our partial model
Mg, is as in Fig. 2. All variables of T' By are assigned, and
only one of variables of T' By and one of V' B are undefined.
As before, the algorithm computes S App (33, Mpar, over):

= SApp’ (=p, Mpa,, over) =
Mcl(ﬂv SAppI (pa MpaT7 under) ’U]M;‘A_ﬂdﬁr) =
MG (=,{0,3},vp4) = {1,2}, and
Zy = SApp! ({0) X p, Mpay, over) =
MCI(<<0>>X > SAppI (pa Mparv over), U]wi;’g}r) =
MCT((0)X . {0,2,3},v),00) = {0,2,3}.
Then we have: MC' (N, Zy1, Zy,vpa) = Z1 N Zy = {2}
The initial state O does not belong to the set, so it is not pos-
sible to extend Myq, to a model for 3. Thus, the algorithm
backtracks and changes some previous assignments.

Our procedure always finds a model for an ATL formula
under given restrictions, provided it exists in the given class.
However, if UNSAT is returned, there is no model satisfying
the formula under given restrictions, but it does not mean
that such a model does not exist at all.

4Zy = {0, 2} if the model-checking procedure considers only
the reachable states.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)

Main Track

Age Age Id 1 2 3 4 5 6 7 8

TBo[0 1 TB,[0 1
0 [TU 0 [TU Product M{0}, VB=[U, U, U, U] Depth 9 13 17 20 23 26 30 33
1 luT 1 luT Con. 13 19 25 31 35 41 49 55
MsAtl[s] | 0.22 0.23 0.24 0.31 0.32 0.34 0.38 0.43
‘i ‘i 0,1) 0, 0) TATL[s] 0.58 6.2 29.7 74.6 229 552 1382 3948

1 1

%

\ I

1
0 USHOR)) 11,0010, 0)
/ 1

\

L)

1,0)

@e\
@s\
O
&

Figure 1: The initial partial model My,

Agent 1

TB,[0 1]
TF
FT

Product M{0}, VB=[T, F, U, T]

®

©>,

:(0, 1) |(O, 0)

=

@

) X1.0)

On]

Figure 2: A partial model M, after several assignments

6 Experimental Results

Due to the lack of standard benchmarks for testing the sat-
isfiability of ATL, we have implemented an ATL formula
generator which, given a number of agents, groups, and
propositional variables, draws a random ATL formula. We
have compared our preliminary results for ATL;SAT with
TATL (David 2015). Despite the fact that our implemen-
tation is at the prototype stage, and there is a lot of space
for optimizations, the results are encouraging. Both tools
need only fractions of a second to test small formulae. When
the formula grows (especially in depth), the time consumed
by both tools also quickly increases. Moreover, which is
typical for SAT-based methods, MsATL’s runtime is higher
for unsatisfiable formulae and large state spaces. It can
be improved by symmetry reductions preventing the explo-
ration of many isomorphic models. However, we have found
a class of formulae for which our tool easily outperforms
TATL - large formulae satisfied by relative small models.
Table 1 presents the results for such formulae generated for
|PV| = 3, | A| = 3, and 4 groups. The table rows contain:
a formula id, the number of nested strategy operators, the
number of Boolean connectives, and computation times>.
Due to lack of space we show only® Form. 1 of Table 1:
()X (=po V (1)G(~p1 V (0, 1)F(~py V ({0, 1)F (—po V
(2N F (0D X (~po v (1) G(—p1 v (0, L) G((ONF—po))))))-

The experiments have been performed using a PC equipped
with Intel i5-7200U CPU and 16GB RAM running Linux.

% Additional resources, including a prototype version of our tool,
the benchmarks, can be accessed at http://monosatatl.epizy.com

547

Table 1: Experimental results for perfect information.

Id | Gr. | Depth | Con L=2 | L=3 L=4 L=5
1 1 2 4 12.1 37.2 88.8 226
2 2 3 9 16.4 | 52.7 167 542
3 3 3 6 158 | 56.6 163 559
4 3 4 6 | 229 | 68.1 194 746
5 4 7 6 | 358 124 285 795
6 5 13 13 | 70.9 265 647 | 2480
7 5 17 15 | 882 314 744 | 2365
8 5 21 18 106 383 1110 | 3470

Table 2: Experimental results for imperfect information.

Table 2 presents experimental results for randomly gen-
erated formulae of ATL;, with MsATL calling STV for the
model checking subtask. The column *Gr.” stands for the
number of distinct groups of agents in the formula, and the
columns marked 'L’ contain computation times (sec.) for
different numbers of local states per agent. These results are
by no means comprehensive, but they show the potential of
our method. It is easy to observe, that dealing with imperfect
information significantly affects the computation times.

Perfect vs. imperfect information. Satisfiability in per-
fect information models implies satisfiability for imperfect
information, but not vice versa (Bulling and Jamroga 2014).
To test MSATL on a (non-randomly generated) case that re-
quires imperfect information, we used formula —¢, where
¢ = (—next A (1)) Fnext A (0)) G (next — (1)) Fwin)) —
(1)) F'win. Intuitively, ¢ expresses that, if agent 1 can get
to a “next” state, and whenever in “next” it has a follow-up
strategy to win, then agent 1 must also have a single strategy
to win.” Formulae like ¢ are known to be valid for ATL;
but not for ATL; (Bulling and Jamroga 2014). Our tool, us-
ing two local states per agent, determined the negation of
¢ to be satisfiable for ATL; (80 sec.) and unsatisfiable for
ATL; (11 sec.), which demonstrates that both functionalities
of MsATL are important.

7 Conclusions

The paper introduced a new method exploiting SMMT
solvers for (bounded) testing of ATL satisfiability and for
constructing (in many cases minimal) ATL models. Despite
the fact that we apply the method to a restricted class of mod-
els for ATL under the standard semantics, our method can be
adapted to other classes of multi-agent systems as well as to
other ATL semantics including imperfect information. Al-
though our implementation is at the preliminary stage, the
experimental results show a high potential for this approach.

"We could not use a more straightforward formalization, since
MSsATL calls STV for model checking, and STV does not admit
the “next time” operator X .

http://monosatatl.epizy.com

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 1997.
Alternating-time temporal logic. In Proc. of the 38th IEEE

Symp. on Foundations of Computer Science (FOCS’97),
100-109. IEEE Computer Society.

Alur, R.; Henzinger, T. A.; and Kupferman, O. 1998.
Alternating-time temporal logic. LNCS 1536:23-60.
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.

Alternating-time temporal logic.
49(5):672-713.

Bayless, S.; Bayless, N.; Hoos, H.; and Hu, A. 2015. SAT
modulo monotonic theories. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, AAAT’ 15,
3702-3709. AAAI Press.

Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2017. Verification of multi-agent systems with imperfect
information and public actions. In Larson, K.; Winikoff,
M.; Das, S.; and Durfee, E. H., eds., Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2017, Sdo Paulo, Brazil, May 8-12, 2017, 1268—
1276. ACM.

Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2019a. Imperfect information in alternating-time temporal
logic on finite traces. In PRIMA 2019: Principles and Prac-
tice of Multi-Agent Systems - 22nd International Confer-
ence, Turin, Italy, October 28-31, 2019, Proceedings, 469—
4717.

Belardinelli, F.; Jamroga, W.; Kurpiewski, D.; Malvone, V.;
and Murano, A. 2019b. Strategy logic with simple goals:
Tractable reasoning about strategies. In Kraus, S., ed., Pro-
ceedings of the Twenty-Eighth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, 88-94. ijcai.org.

Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2020. Verification of multi-agent systems with public ac-
tions against strategy logic. Artif. Intell. 285:103302.

Belardinelli, F. 2014. Reasoning about knowledge and
strategies: Epistemic strategy logic. In Proceedings 2nd
International Workshop on Strategic Reasoning, SR 2014,
Grenoble, France, April 5-6, 2014, 27-33.

Berthon, R.; Maubert, B.; Murano, A.; Rubin, S.; and Vardi,
M. Y. 2017. Strategy logic with imperfect information. In
32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017,
1-12. IEEE Computer Society.

Bloem, R.; Jobstmann, B.; Piterman, N.; Pnueli, A.; and
Sa’ar, Y. 2012. Synthesis of reactive(1) designs. J. Comput.
Syst. Sci. 78:911-938.

Bloem, R.; Konighofer, R.; and Seidl, M. 2014. SAT-based
synthesis methods for safety specs. In International Confer-
ence on Verification, Model Checking, and Abstract Inter-
pretation, 1-20. Springer.

Bulling, N., and Jamroga, W. 2011. Alternating epistemic
p-calculus. In Proceedings of IJCAI-11, 109-114.

Bulling, N., and Jamroga, W. 2014. Comparing variants
of strategic ability: How uncertainty and memory influence

Journal of the ACM

548

general properties of games. Journal of Autonomous Agents
and Multi-Agent Systems 28(3):474-518.

Bulling, N.; Dix, J.; and Jamroga, W. 2010. Model check-
ing logics of strategic ability: Complexity. In Dastani, M.;
Hindriks, K.; and Meyer, J.-J., eds., Specification and Verifi-
cation of Multi-Agent Systems. Springer. 125-159.

Cermék, P.; Lomuscio, A.; Mogavero, F.; and Murano, A.
2018. Practical verification of multi-agent systems against
SLK specifications. Inf. Comput. 261(Part):588-614.

Cermék, P.; Lomuscio, A.; and Murano, A. 2015. Verifying
and synthesising multi-agent systems against one-goal strat-
egy logic specifications. In Bonet, B., and Koenig, S., eds.,
Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, January 25-30, 2015, Austin, Texas, USA,
2038-2044. AAAI Press.

Chatterjee, K.; Henzinger, T.; and Piterman, N. 2010. Strat-
egy logic. Inf. Comput. 208(6):677—693.

Clarke, E., and Emerson, E. 1981. Design and synthesis
of synchronization skeletons using branching time tempo-
ral logic. In Proceedings of Logics of Programs Workshop,
volume 131 of Lecture Notes in Computer Science, 52—71.

David, A. 2015. Deciding ATL* satisfiability by tableaux.
In International Conference on Automated Deduction, 214—
228. Springer.

Dima, C., and Tiplea, F. 2011. Model-checking ATL under
imperfect information and perfect recall semantics is unde-
cidable. CoRR abs/1102.4225.

Dima, C.; Maubert, B.; and Pinchinat, S. 2014. The expres-
sive power of epistemic p-calculus. CoRR abs/1407.5166.

Dima, C.; Maubert, B.; and Pinchinat, S. 2015. Relating
paths in transition systems: The fall of the modal p-calculus.
In Proceedings of MFCS, volume 9234 of Lecture Notes in
Computer Science, 179-191. Springer.

Eén, N., and Sorensson, N. 2003. An extensible SAT-
solver. In Theory and Applications of Satisfiability Testing,
6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers, vol-
ume 2919 of Lecture Notes in Computer Science, 502-518.
Springer.

Finkbeiner, B., and Schewe, S. 2013. Bounded synthesis. In-
ternational Journal on Software Tools for Technology Trans-
fer 15(5-6):519-539.

Goranko, V., and Drimmelen, G. V. 2006. Complete axiom-
atization and decidability of alternating-time temporal logic.
Theoretical Computer Science 353(1-3):93-117.

Goranko, V., and Shkatov, D. 2009. Tableau-based deci-
sion procedures for logics of strategic ability in multiagent
systems. ACM Trans. Comput. Log. 11(1):3:1-3:51.

Hausmann, D.; Schroder, L.; and Egger, C. 2016. Global
caching for the alternation-free p-calculus. In Desharnais, J.,
and Jagadeesan, R., eds., 27th International Conference on
Concurrency Theory, CONCUR 2016, August 23-26, 2016,
Québec City, Canada, volume 59 of LIPIcs, 34:1-34:15.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

Jamroga, W., and Dix, J. 2006. Model checking ATL;,. is in-
deed AL -complete. In Proceedings of EUMAS’06, volume
223 of CEUR Workshop Proceedings. CEUR-WS.org.

Jamroga, W.; Penczek, W.; Dembinski, P; and
Mazurkiewicz, A. 2018. Towards partial order reduc-
tions for strategic ability. In Proceedings of the 17th
International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’18, 156-165.

Jamroga, W.; Knapik, M.; Kurpiewski, D.; and Mikulski, L.
2019. Approximate verification of strategic abilities under
imperfect information. Artif. Intell. 277.

Jamroga, W.; Knapik, M.; and Kurpiewski, D. 2017. Fix-
point approximation of strategic abilities under imperfect in-
formation. In Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS 2017,
Sdo Paulo, Brazil, May 8-12, 2017, 1241-1249.

Jones, A. V.; Knapik, M.; Penczek, W.; and Lomuscio, A.
2012. Group synthesis for parametric temporal-epistemic
logic. In International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2012, Valencia, Spain,
June 4-8, 2012 (3 Volumes), 1107-1114.

Klenze, T.; Bayless, S.; and Hu, A. 2016. Fast, flexible,
and minimal CTL synthesis via SMT. In Chaudhuri, S.,
and Farzan, A., eds., Computer Aided Verification, 136—156.
Springer International Publishing.

Kouvaros, P.; Lomuscio, A.; and Pirovano, E. 2018. Sym-
bolic synthesis of fault-tolerance ratios in parameterised
multi-agent systems. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, 1J-
CAI 2018, July 13-19, 2018, Stockholm, Sweden, 324-330.

Kupferman, O., and Vardi, M. 2005. Safraless decision pro-
cedures. In 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’05), 531-540. IEEE.

Kurpiewski, D.; Jamroga, W.; and Knapik, M. 2019. STV:
model checking for strategies under imperfect information.
In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 19,
Montreal, QC, Canada, May 13-17, 2019, 2372-2374.

Lomuscio, A.; Qu, H.; and Raimondi, F. 2017. MCMAS:
an open-source model checker for the verification of multi-
agent systems. International Journal on Software Tools for
Technology Transfer 19(1):9-30.

Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M.
2012a. A decidable fragment of strategy logic. CoRR
abs/1202.1309.

Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. 2012b.
What makes ATL* decidable? A decidable fragment of
strategy logic. In CONCUR 2012 - Concurrency Theory -
23rd International Conference, CONCUR 2012, Newcastle
upon Tyne, UK, September 4-7, 2012. Proceedings, 193—
208.

Niewiadomski, A.; Kacprzak, M.; Kurpiewski, D.; Knapik,
M.; Penczek, W.; and Jamroga, W. 2020. MsATL: A tool
for SAT-based ATL satisfiability checking. In Seghrouchni,
A. E. F.; Sukthankar, G.; An, B.; and Yorke-Smith, N.,
eds., Proceedings of the 19th International Conference on

549

Autonomous Agents and Multiagent Systems, AAMAS 20,
Auckland, New Zealand, May 9-13, 2020, 2111-2113. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.

Pauly, M. 2002. A modal logic for coalitional power in
games. J. Log. Comput. 12(1):149-166.

Schewe, S., and Finkbeiner, B. 2007. Distributed synthe-
sis for alternating-time logics. In Automated Technology
for Verification and Analysis, Sth International Symposium,
ATVA 2007, Tokyo, Japan, October 22-25, 2007, Proceed-
ings, 268-283.

Schewe, S. 2008. ATL* satisfiability is 2EXPTIME-
complete. In Automata, Languages and Programming, 35th
International Colloquium, ICALP 2008, Reykjavik, Iceland,
July 7-11, 2008, Proceedings, Part II - Track B: Logic, Se-
mantics, and Theory of Programming & Track C: Security
and Cryptography Foundations, 373-385.

Schobbens, P. Y. 2003. ATL with imperfect recall. Presented
at the workshop “Logic and Communication in Multi-Agent
Systems”, June 29, 2003, Eindhoven, Netherlands.

Schobbens, P. Y. 2004. Alternating-time logic with imper-
fect recall. Electronic Notes in Theoretical Computer Sci-

ence 85(2):82-93.

van Drimmelen, G. 2003. Satisfiability in alternating-time
temporal logic. In 18th Annual IEEE Symposium of Logic in
Computer Science, 2003. Proceedings., 208-217. 1EEE.

Walther, D.; Lutz, C.; Wolter, F.; and Wooldridge, M. 2006.
ATL satisfiability is indeed EXPTIME-complete. Journal of
Logic and Computation 16(6):765-787.

	Introduction
	Contribution
	Related Work
	Outline of the Approach

	MAS and ATL
	Multi-agent System
	Alternating-time Temporal Logic

	Boolean Monotonic Theory for ATL
	Boolean Monotonic Theory
	Boolean Encoding of ATL Models
	Predicate Model
	Functions solve and MC

	Approximating ATL Models
	Construction of Mover and Munder
	Algorithm SApp

	Satisfiability Procedure
	Monotonic Predicate MApp
	Satisfiability Tool

	Experimental Results
	Conclusions

