
Answer Set Programming with Composed Predicate Names

Mario Alviano
DEMACS, University of Calabria, Italy

alviano@mat.unical.it

Abstract

Mainstream systems for Answer Set Programming imple-
ment intelligent grounding to eliminate object variables from
the input program, often obtaining a propositional program
of reasonable size. However, non-stratified negation may in-
hibit the simplification of some rule bodies due to the lack
of knowledge on the truth of recursive atoms. Frustration is
greatest when the program is clearly locally stratified, such
as in case of numerical arguments in rule heads obtained by
increasing some body arguments; common examples are min-
imal distances in graphs and time arguments in planning sce-
narios. This paper suggests to move some arguments in pred-
icate names, so that the declarative semantics of Answer Set
Programming is preserved, but non-stratified negation is pos-
sibly avoided thanks to symbolic rule instantiation. A proof
of concept is given in terms of Jinja templates for arguments
with a clear range.

1 Introduction
Answer Set Programming (ASP) is a popular language
for nonmonotonic reasoning based on stable model seman-
tics (Gelfond and Lifschitz 1991). Mainstream ASP sys-
tems eliminate object variables from the input program by
means of intelligent grounding techniques (Kaufmann et al.
2016), possibly enhanced by magic sets in case of queries
(Alviano and Faber 2011; Alviano et al. 2019b), so that
stable model search is later performed on a propositional
program by efficient solvers like CLASP (Gebser, Kauf-
mann, and Schaub 2012) and WASP (Dodaro et al. 2011;
Alviano et al. 2019a). The grounding process starts by de-
termining an order of the predicates based on head-to-body
dependencies: the grounding of a rule with predicate p in
the head needs to know the instances of any predicate q in
its body, that is, rules defining q cannot be grounded after
those defining p. When predicates are totally ordered, intel-
ligent grounding is very efficient because each rule is pro-
cessed only once. For otherwise, efficiency is achieved by
semi-naive evaluation (Ullman 1988), that is, rules that must
be processed multiple times are evaluated only for new sub-
stitutions of object variables.

Intelligent grounding simplifies the produced rules based
on the knowledge of true and potentially true atoms (Faber,
Leone, and Perri 2012). In particular, producing a rule with
atom p(t) in the head witnesses the potential truth of p(t) in

some stable models; if the body of the rule is empty, p(t)
must be true in all stable models. If p(t) is known to be
true, all rules in which it occurs negatively can be removed,
as well as all its occurrences in positive bodies. Moreover,
falsity of some atoms is determined thanks to the order in
which predicates are processed: while processing predicate
p, every atom q(t) not known to be potentially true, and such
that q precedes p, must be false in all stable models; accord-
ingly, any not q(t) in rule bodies can be removed.

Non-stratified negation may inhibit these simplifications.
For example, for any n ≥ 0, the rule
odd(X+1) :- X = 0..n-1, not odd(X).

defines odd numbers in the interval [0..n]. However, when
X is replaced by 0, there is no knowledge that odd(0)
must be false in all stable models, and therefore intelli-
gent grounding produces odd(1):- not odd(0), failing
to understand that odd(1) is true in all stable models. Con-
sequently, intelligent grounding produces odd(2):- not
odd(1), and so on. We observe that this ground program
has no recursion, in particular involving negation. In fact, it
is true that predicate odd negatively depends on itself, but
argument X is increased in rule head, and therefore every
rule produced by intelligent grounding only depends on pre-
viously produced rules. Something similar happens for plan-
ning scenarios, where many atoms have an argument repre-
senting a time step (Dimopoulos, Nebel, and Koehler 1997;
Lifschitz 2002; Dimopoulos et al. 2019).

For these cases, we propose to move some arguments in
predicate names, hence introducing the notion of composed
predicate name. The example above would become
oddX+1 :- X = 0..n-1, not oddX.

Semantically, there is no difference, but pragmatically we
can now expand the symbolic program before starting in-
telligent grounding. We actually provide a proof of con-
cept of the proposed idea by means of Jinja templates (https:
//palletsprojects.com/p/jinja/). Our example becomes
{% for X in range(0, n) %}

odd_{{ X+1 }} :- not odd_{{ X }}.
{% endfor %}

Experiments on computing distances in graphs and on
grounding planning instances show that this simple solution
works in practice when the range of the arguments in com-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

44

https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/jinja/


posed predicate names is clear and of reasonable size. On
the other hand, there is no performance gain on using the
proposed approach when the grounding bottleneck is already
eliminated via some other techniques.

2 Background
We introduce only the minimal background to present our
results, and refer the literature for details (Gebser et al.
2012). Let V , C, and P be fixed, nonempty, countable sets
of (object) variables, (object) constants, and predicate sym-
bols. A term is either a variable or a constant, and a pred-
icate name is a predicate symbol. An atom has the form
p(t1, . . . , tn), where p is a predicate name, n ≥ 0, and each
ti is a term (i ∈ [1..n]). A rule r is an expression of the form

α0 :– α1, . . . , αm,not αm+1, . . . ,not αn.

where n ≥ m ≥ 0, and each αi is an atom (i ∈ [0..n]).
Let H(r) := α0, B+(r) := {α1, . . . , αm}, and B−(r) :=
{αm+1, . . . , αn}; r is a fact if B+(r) = B−(r) = ∅. A
program Π is a set of rules. An expression (atom, rule, or
program) is ground if it contains no variables.

For a program Π, let gr(Π) be the set
⋃

r∈Π gr(r), where
gr(r) denotes the set of rules obtainable from rule r by re-
placing variables with constants. An interpretation I is a set
of ground atoms, intuitively those interpreted as true. I sat-
isfies a ground rule r if H(r) ∈ I (true head), or B+(r) 6⊆ I
(false positive body), or B−(r) ∩ I 6= ∅ (false negative
body). I is a model of a program Π, denoted I |= Π, if I sat-
isfies all rules in gr(Π). The reduct of Π wrt. I , denoted ΠI ,
is obtained from gr(Π) by removing all rules whose body is
false. I is a stable model of a program Π if I |= Π and there
is no J ⊂ I such that J |= ΠI . Let SM (Π) denote the set
of stable models of Π.

Example 1. Given a graph represented by facts vertex(x)
and edge(x,y), minimal distances between its vertices can
be computed by means of the following program Πdist :

dist(X,X,0) :- vertex(X).
dist(X,Y,D+1) :- dist(X,Z,D), edge(Z,Y),

not less(X,Y,D+1), D < vertices.
less(X,Y,D+1) :- dist(X,Y,D).
less(X,Y,D+1) :- less(X,Y,D), D < vertices.

where vertices is the number of vertices in the graph, and
arithmetic is naturally interpreted. For example, given Π1

vertex(a). vertex(b). vertex(c).
edge(a,b). edge(b,c). edge(b,a). edge(c,b).

program gr(Π1 ∪Πdist) contains, among others, the rules

dist(a,a,0) :- vertex(a).

dist(a,b,1) :- dist(a,a,0), edge(a,b),
not less(a,b,1), 0 < 3.

less(a,a,1) :- dist(a,a,0).
less(a,b,1) :- dist(a,b,0).

dist(a,a,2) :- dist(a,b,1), edge(b,a),
not less(a,a,2), 1 < 3.

dist(a,c,2) :- dist(a,b,1), edge(b,c),
not less(a,c,2), 1 < 3.

less(a,a,2) :- less(a,a,1), 1 < 3.

Algorithm 1: Grounding(Π: program)
1 L := ∅; U := ∅; Π′ := ∅;
2 Let C1, . . . , Cn be a top. order. for the SCCs of GΠ;
3 for i ∈ [1..n] do
4 foreach r ∈ gr(def (Π, Ci)) s.t. B+(r) ⊆ U and

H(r) /∈ L and B−(r) ∩ L = ∅ do
5 B+(r) := B+(r) \ L;
6 B−(r) := {p(t)∈B−(r) |p(t)∈U or p∈Ci};
7 Π′ := Π′ ∪ {r}; U := U ∪ {H(r)};
8 if r is a fact then L := L ∪ {H(r)};

9 return Π′;

and the only stable model in SM (Π1 ∪Πdist) comprises the
following instances of dist(X,Y,D): (a,a,0), (b,b,0),
(c,c,0), (a,b,1), (b,a,1), (b,c,1), (c,b,1),
(a,c,2), and (c,a,2). �

Given a program Π, intelligent grounding aims at obtain-
ing a subset Π′ of gr(Π) such that SM (Π′) = SM (Π). In-
tuitively, intelligent grounding simplifies rules according to
deterministic knowledge on the processed program. It as-
sumes safety of rules, that is, every variable occurring in
a rule r must also occur in B+(r), and instantiates rules
following a topological ordering of the strongly connected
components (SCCs) of the dependency graph GΠ, that is, a
directed graph whose nodes are predicates, and having two
kinds of links: positive links from p to p′ if p and p′ occur
respectively inH(r) andB+(r), for some rule r of Π; nega-
tive links from p to p′ if p and p′ occur respectively in H(r)
and B−(r), for some rule r of Π. Π is stratified (wrt. nega-
tion) if there is no cycle inGΠ involving negative links. Π is
locally stratified (Przymusinski 1988) if gr(Π) is stratified.

To ease the presentation, a naive grounding procedure is
reported as Algorithm 1, where def (Π, Ci) denotes the set
of rules of Π such that the predicate of H(r) belongs to
Ci. Lower and upper bounds on the set of true atoms are
stored in L and U , respectively, and processes every rule r in
def (Π, Ci) trying to unify B+(r) with U , the atoms having
chances to be true; rules whose head is already known to be
true or whose negative body is known to be false are skipped
(line 4). Rules instantiated in this way are simplified by re-
moving atoms in B+(r) that are known to be true (line 5),
and atoms in B−(r) that are known to be false (line 6), that
is, those not occurring in U and whose predicates belong to
already processed components. The new rule witnesses the
possibility for its head to be true (line 7), and unequivocally
determines the truth of its head if the body is empty (line 8).

Example 2 (Continuing Example 1). Let {vertex}, {edge},
{dist , less} be the topological ordering used by Algorithm 1
for instantiating Π1 ∪ Πdist . After processing the first two
components, L, U and Π′ contain all facts in Π1. Processing
the last component requires several iterations on the rules of
Πdist ; focusing on the ground rules from Example 1, their
simplification is the following:

dist(a,a,0).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

45



dist(a,b,1) :- not less(a,b,1).
less(a,a,1).

dist(a,a,2) :- dist(a,b,1), not less(a,a,2).
dist(a,c,2) :- dist(a,b,1), not less(a,c,2).
less(a,a,2).

Note that less(a,b,1):- dist(a,b,0) is not pro-
duced because no rule with dist(a,b,0) in the head
is ever generated. Note also that dist(a,a,2):-
dist(a,b,1), not less(a,a,2) is produced before
adding less(a,a,2) to L. �

Even if the actual grounding procedures implemented by
ASP systems are much more sophisticated than Algorithm 1,
their behavior on programs like Πdist is essentially the one
described in Example 2. This fact can be verified by instanti-
ating Π1 ∪Πdist with CLINGO (https://potassco.org/clingo/)
using the command-line option --text.

3 Composed Predicate Names
ASP is extended by allowing the use of composed predicate
names, that is, predicate symbols possibly carrying terms.
Formally, a composed predicate name has the form pt1,...,tn ,
where p is a predicate symbol, n ≥ 0, and each ti is a term
(i ∈ [1..n]). Definitions from Section 2 naturally extend to
the new notion of predicate name.

Example 3. The problem from Example 1 can be repre-
sented by the following program Πcdist :

dist0(X,X) :- vertex(X).
distD+1(X,Y) :- distD(X,Z), edge(Z,Y),

not lessD+1(X,Y), D < vertices.
lessD+1(X,Y) :- distD(X,Y).
lessD+1(X,Y) :- lessD(X,Y), D < vertices.

Program gr(Π1 ∪ Πcdist ) is essentially one-to-one to
gr(Π1 ∪ Πdist). However, grounding composed predicate
names only, results into a stratified program, which can be
later efficiently processed by intelligent grounding. �

Let us first define a one-to-one mapping to eliminate com-
posed predicate names. To ease the presentation, for every
n ≥ m ≥ 0 and atom ptm+1,...,tn(t1, . . . , tm) occurring
in a program Π, predicate p is assumed to be associated
with a unique arity, that is, the pair (m,n − m) . Define
tr(ptm+1,...,tn(t1, . . . , tm)) to be p(t1, . . . , tn), and extend
tr to any expression in the natural way. In particular, tr(Π)
and tr(SM (Π)) are obtained from program Π and SM (Π)
by replacing every atom αwith tr(α). Note that the (unique)
arity of p is (m,n − m) in Π, and (0, n) in tr(Π). More-
over, note that tr(Πcdist ) is Πdist , and tr(SM (Πcdist )) is
SM (Πdist); such links are formalized by the next theorem.

Theorem 1. Let Π be a program with composed predicate
names. It holds that SM (tr(Π)) = tr(SM (Π)).

The claim above clarifies that composed predicate names
are essentially syntactic sugar from a semantic point of view.
However, we already suggested that their instantiation can
lead to programs with good properties, essentially more fine-
grained dependency graphs.

Example 4 (Continuing Example 3). Let Π be the program
obtained from Πcdist by replacing variable D with all nat-
ural numbers. A topological ordering of the SCCs of GΠ is
the following: {vertex}, {edge}, {dist0}, {less1}, {dist1},
{less2}, and so on. Algorithm 1 on Π1 ∪ Π would produce
the following rules:

dist0(a,a).dist0(b,b).dist0(c,c).
less1(a,a).less1(b,b).less1(c,c).
dist1(a,b).dist1(b,a).dist1(b,c).dist1(c,b).
less2(a,a).less2(b,b).less2(c,c). ...
dist2(a,c).dist2(c,a).
less3(a,a).less3(b,b).less3(c,c). ...

All rules are actually facts because Π is stratified. Note that
no rules are produced after processing the SCC {less3},
which however does not guarantee the termination of Al-
gorithm 1 because Π contains infinitely many rules. �

The above example suggests the need for a finite instan-
tiation of composed predicate names in order to make their
use of practical interest. The simplest solution is to limit
the range of all variables occurring in composed predicate
names. Let range be a partial function from variables to
finite sets of constants. A rule r is (finitely) restricted by
range ifB+(r) contains the built-in relationX ∈ range(X)
whenever X is a variable occurring in a composed predicate
name of r. A program Π is restricted by range if all its rules
are.
Example 5. Let range(D) be the interval [0..vertices − 1].
Below is a restricted version of Πcdist from Example 3:

dist0(X,X) :- vertex(X).
distD+1(X,Y) :- distD(X,Z), edge(Z,Y),

not lessD+1(X,Y), D = 0..vertices-1.
lessD+1(X,Y) :- distD(X,Y), D=0..vertices-1.
lessD+1(X,Y) :- lessD(X,Y), D=0..vertices-1.

Note that the range is expressed by D = 0..vertices-1,
a common ASP construct for integer intervals. �

Composed predicate names of restricted programs can be
easily instantiated. Formally, let Π be a program restricted
by range . For a rule r of Π, let exp(r, range) be the set of
rules constructible from r by replacing X with constants in
range(X), for all variablesX for which range is defined, in
all possible ways. For example, expanding
lessD+1(X,Y) :- distD(X,Y), D=0..vertices-1.

from Example 5, with vertices = 3, leads to
less1(X,Y) :- dist0(X,Y), 0=0..3-1.
less2(X,Y) :- dist1(X,Y), 1=0..3-1.
less3(X,Y) :- dist2(X,Y), 2=0..3-1.

Let exp(Π, range) be the union of exp(r, range), for all
rules r ∈ Π. Observe that program exp(Π, range) is finite
and without composed predicate names, hence it is suitable
for being processed by intelligent grounding algorithms.
Theorem 2. Algorithm 1 on exp(Π, range) produces a
ground program Π′ such that SM (Π) = SM (Π′).

4 Jinja Templates and Experiments
The idea of composed predicate names can be implemented,
among other possibilities, by means of Jinja templates,

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

46

https://potassco.org/clingo/


0

20

40

60
R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

JINJA

ENC 1

ENC 2

ENC 3

0 50 100 150 200
0

20

40

60

Bound to the number of nodes

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

API 1

API 2

Figure 1: Computation of distances in graphs by CLINGO.

a modern and designer-friendly templating language for
Python. Jinja templates are essentially text files with state-
ments, denoted by {% ... %}, and expressions, denoted by
{{ ... }}. Statements are used for conditionals and iter-
ations, while expressions are used to print literal and non-
literal content. For example, distances of nodes in a graph
can be computed by means of the following template:
dist_{{ 0 }}(X,X) :- vertex(X).
{% for D in range(0, vertices) %}

dist{{ D+1 }}(X,Y) :- dist_{{ D }}(X,Z),
edge(Z,Y), not less_{{ D+1 }}(X,Y).

less_{{ D+1 }}(X,Y) :- dist_{{ D }}(X,Y).
less_{{ D+1 }}(X,Y) :- less_{{ D }}(X,Y).

{% endfor %}

We conducted some experiments to compare the perfor-
mance of CLINGO 5.3.0 (Gebser et al. 2019) on different
encodings (available on https://www.mat.unical.it/∼alviano/
experiment-kr2020.zip). Test cases were ran on an Intel
Xeon 2.4 GHz with 16 GB of memory, with time and mem-
ory limited to 60 seconds and 15 GB, respectively. The aim
of our experiments is to measure differences in grounding
time, and in particular to highlight cases in which ground-
ing is already a bottleneck for ASP systems; the subsequent
stable model search, if applicable, was not ran because un-
informative for this paper (intuitively, reordering a ground
program may lead to dramatic and unpredictable execution
times of stable model search). Hence, CLINGO was ran with
the command-line option --mode=gringo.

We first computed distances in graphs from the ASP Com-
petition (Alviano et al. 2013), in particular from the Graceful
Graph problem. For each graph, we obtained different test-
cases by limiting the computation to the first n nodes (for a
total of 3570 testcases). Results are shown in Figure 1, and
clearly highlight that the Jinja template above scales much
better than traditional ASP representations of this problem

0

20

40

60

R
u
n
n
in
g
ti
m
e
(s
e
c
o
n
d
s)

Jinja - robotT (R,X,Y)

ENC - robot(R,X,Y,T)

0 50 100 150 200 250 300 350
0

10

20

30

Grid size

R
u
n
ti
m
e
(s
)

Jinja reformulation

ENC from Competition

Figure 2: Grounding of Ricochet robots instances with CLINGO.

(ENC 1 is essentially Πdist ), even if negation is stratified as
in the following program (ENC 2):
d(X,X,0) :- vertex(X).
d(X,Y,D+1) :- d(X,Z,D),edge(Z,Y),D<vertices.
dist(X,Y,D):-d(X,Y,D);notd(X,Y,D’):D’=0..D-1.

or in the following program (ENC 3):
d(X,X,0) :- vertex(X).
d(X,Y,D+1) :- d(X,Z,D),edge(Z,Y),D<vertices.
out(X,Y,D) :- d(X,Y,D), d(X,Y,D’), D > D’.
dist(X,Y,D) :- d(X,Y,D), not out(X,Y,D).

In this case, Jinja templates are convenient also wrt. using
multi-shot computation to instantiate Πdist for increasing
values of D (API 1), even if predicates lessD are com-
pactly replaced by a single predicate done (API 2). We also
observed no timeout using Jinja, 1709, 2201 and 1656 time-
outs using traditional ASP encodings, and 1888 and 1731
timeouts using multi-shot computation.

A second set of testcases is obtained from Ricochet robots
(Gebser et al. 2015), a problem asking to coordinate robots
in a grid. For each instance, we obtained different test-
cases by increasing the size of the grid (for a total of
4780 testcases). Results are shown in Figure 2. The first
plot evidences that Jinja templates are very convenient if
positions of robots are represented by atoms of the form
robot_T(R,X,Y). The second plot is relative to the ad-
vanced encoding from ASP competitions, which represents
positions of robots on the two axes with different predicates
to avoid the grounding bottleneck. This encoding is not fur-
ther improved by the use of Jinja templates because almost
all produced ground atoms are relevant for stable model
search. We observed 4217 timeouts with the encoding using
robot_T(R,X,Y), and no timeouts with other encodings.

5 Conclusion
Composed predicate names are simple and semantically
aligned to common constructs of ASP. Arguments in com-
posed predicate names that have a clear range can be eas-
ily processed by means of Jinja templates, and in some
cases this is sufficient to eliminate the grounding bottle-
neck. We suggest to use Jinja templates in those cases, and

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

47

https://www.mat.unical.it/~alviano/experiment-kr2020.zip
https://www.mat.unical.it/~alviano/experiment-kr2020.zip


only if ranges have reasonable size. More sophisticated ex-
pansion techniques are left as future lines of research, as
well as a comparison with Datalog extended with monotonic
aggregates (Zaniolo 2015; Shkapsky, Yang, and Zaniolo
2015), stream reasoning (Beck, Dao-Tran, and Eiter 2018;
Eiter, Ogris, and Schekotihin 2019), lazy grounding (Bo-
manson, Janhunen, and Weinzierl 2019), and theory-based
extensions of ASP (Janhunen, Liu, and Niemelä 2011).

Acknowledgments
This work was partially supported by MISE under
projects S2BDW (F/050389/01-03/X32) and ALCMEONE
(F/050502/03/X32), by Regione Calabria under project
DLV LargeScale (CUP J28C17000220006), and by Gruppo
Nazionale per il Calcolo Scientifico (GNCS-INdAM).

References
Alviano, M., and Faber, W. 2011. Dynamic magic sets
and super-coherent answer set programs. AI Commun.
24(2):125–145.
Alviano, M.; Calimeri, F.; Charwat, G.; Dao-Tran, M.;
Dodaro, C.; Ianni, G.; Krennwallner, T.; Kronegger, M.;
Oetsch, J.; Pfandler, A.; Pührer, J.; Redl, C.; Ricca, F.;
Schneider, P.; Schwengerer, M.; Spendier, L. K.; Wallner,
J. P.; and Xiao, G. 2013. The fourth answer set program-
ming competition: Preliminary report. In Cabalar, P., and
Son, T. C., eds., LPNMR 2013, Corunna, Spain, September
15-19, volume 8148 of LNCS, 42–53. Springer.
Alviano, M.; Amendola, G.; Dodaro, C.; Leone, N.;
Maratea, M.; and Ricca, F. 2019a. Evaluation of dis-
junctive programs in WASP. In Balduccini, M.; Lierler,
Y.; and Woltran, S., eds., LPNMR 2019, Philadelphia, PA,
USA, June 3-7, 2019, Proceedings, volume 11481 of Lecture
Notes in Computer Science, 241–255. Springer.
Alviano, M.; Leone, N.; Veltri, P.; and Zangari, J. 2019b.
Enhancing magic sets with an application to ontological rea-
soning. Theory Pract. Log. Program. 19(5-6):654–670.
Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. LARS: A logic-
based framework for analytic reasoning over streams. Artif.
Intell. 261:16–70.
Bomanson, J.; Janhunen, T.; and Weinzierl, A. 2019. En-
hancing lazy grounding with lazy normalization in answer-
set programming. In AAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, 2694–2702. AAAI Press.
Dimopoulos, Y.; Gebser, M.; Lühne, P.; Romero, J.; and
Schaub, T. 2019. plasp 3: Towards effective ASP planning.
Theory Pract. Log. Program. 19(3):477–504.
Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997. Encod-
ing planning problems in nonmonotonic logic programs. In
Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning, ECP’97, Toulouse, France, September 24-26, 1997,
Proceedings, volume 1348 of LNCS, 169–181. Springer.
Dodaro, C.; Alviano, M.; Faber, W.; Leone, N.; Ricca, F.;
and Sirianni, M. 2011. The birth of a WASP: preliminary
report on a new ASP solver. In Fioravanti, F., ed., CILC
2011, Pescara, Italy, August 31 - September 2, 2011, volume
810 of CEUR Workshop Proceedings, 99–113.

Eiter, T.; Ogris, P.; and Schekotihin, K. 2019. A distributed
approach to LARS stream reasoning (system paper). Theory
Pract. Log. Program. 19(5-6):974–989.
Faber, W.; Leone, N.; and Perri, S. 2012. The intelligent
grounder of DLV. In Erdem, E.; Lee, J.; Lierler, Y.; and
Pearce, D., eds., Correct Reasoning - Essays on Logic-Based
AI in Honour of Vladimir Lifschitz, volume 7265 of LNCS,
247–264. Springer.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.
Gebser, M.; Kaminski, R.; Obermeier, P.; and Schaub, T.
2015. Ricochet robots reloaded: A case-study in multi-shot
ASP solving. In Eiter, T.; Strass, H.; Truszczynski, M.; and
Woltran, S., eds., Advances in Knowledge Representation,
Logic Programming, and Abstract Argumentation - Essays
Dedicated to Gerhard Brewka on the Occasion of His 60th
Birthday, volume 9060 of LNCS, 17–32. Springer.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory Pract.
Log. Program. 19(1):27–82.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artif.
Intell. 187:52–89.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Comput. 9(3/4):365–386.
Janhunen, T.; Liu, G.; and Niemelä, I. 2011. Tight integra-
tion of non-ground answer set programming and satisfiabil-
ity modulo theories. In Proc. of the 1st Workshop on Gro-
unding and Transformations for Theories with Variables.
Kaufmann, B.; Leone, N.; Perri, S.; and Schaub, T. 2016.
Grounding and solving in answer set programming. AI Mag-
azine 37(3):25–32.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138:39–54.
Przymusinski, T. C. 1988. On the declarative semantics of
deductive databases and logic programs. In Minker, J., ed.,
Foundations of Deductive Databases and Logic Program-
ming. Morgan Kaufmann. 193–216.
Shkapsky, A.; Yang, M.; and Zaniolo, C. 2015. Optimizing
recursive queries with monotonic aggregates in deals. In
Gehrke, J.; Lehner, W.; Shim, K.; Cha, S. K.; and Lohman,
G. M., eds., 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17,
2015, 867–878. IEEE Computer Society.
Ullman, J. D. 1988. Principles of Database and Knowledge-
Base Systems, Volume I, volume 14 of Principles of com-
puter science series. Computer Science Press.
Zaniolo, C. 2015. Expressing and supporting efficiently
greedy algorithms as locally stratified logic programs. In
Vos, M. D.; Eiter, T.; Lierler, Y.; and Toni, F., eds., Tech.
Comm. of ICLP 2015, Cork, Ireland, August 31 - September
4, 2015, volume 1433 of CEUR Workshop Proceedings.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

48


	Introduction
	Background
	Composed Predicate Names
	Jinja Templates and Experiments
	Conclusion

