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Abstract

Answer Set Programming (ASP) is a paradigm and problem
modeling/solving toolkit for KR that is often invoked. There
are plenty of results dedicated to studying the hardness of
(fragments of) ASP. So far, these studies resulted in character-
izations in terms of computational complexity as well as in
fine-grained insights presented in form of dichotomy-style re-
sults, lower bounds when translating to other formalisms like
propositional satisfiability (SAT), and even detailed parame-
terized complexity landscapes. A quite generic and prominent
parameter in parameterized complexity originating from graph
theory is the so-called treewidth, which in a sense captures
structural density of a program. Recently, there was an in-
crease in the number of treewidth-based solvers related to SAT.
While there exist several translations from (normal) ASP to
SAT, yet there is no reduction preserving treewidth or at least
being aware of the treewidth increase. This paper deals with a
novel reduction from normal ASP to SAT that is aware of the
treewidth, and guarantees that a slight increase of treewidth
is indeed sufficient. Then, we also present a new result estab-
lishing that when considering treewidth, already the fragment
of normal ASP is slightly harder than SAT (under reasonable
assumptions in computational complexity). This also confirms
that our reduction probably cannot be significantly improved
and that the slight increase of treewidth is unavoidable.

1 Introduction
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczyński 2011) is an active research area of knowledge
representation and reasoning. ASP provides a declarative
modeling language and problem solving framework (Gebser
et al. 2012) for hard computational problems, which has been
widely applied (Balduccini, Gelfond, and Nogueira 2006;
Niemelä, Simons, and Soininen 1999; Nogueira et al. 2001;
Guziolowski et al. 2013; Schaub and Woltran 2018). In ASP
questions are encoded into rules and constraints that form a
program (over atoms), whose solutions are called answer sets.

In terms of computational complexity, the consistency
problem of deciding the existence of an answer set is well-
studied, i.e., the problem is ΣP2 -complete (Eiter and Gott-
lob 1995). Some fragments of ASP have lower complexity
though. A prominent example is the class of head-cycle-free
(HCF) programs (Ben-Eliyahu and Dechter 1994), which is
a certain generalization of the class of normal programs and
requires the absence of cycles in a certain graph representa-

tion of the program. Deciding whether such a program has
an answer set is NP-complete.

There is also a wide range of more fine-grained stud-
ies (Truszczynski 2011) for ASP, also in parameterized com-
plexity (Cygan et al. 2015; Niedermeier 2006; Downey and
Fellows 2013; Flum and Grohe 2006), where certain (combi-
nations of) parameters (Fichte, Kronegger, and Woltran 2019;
Lackner and Pfandler 2012) are taken into account. In param-
eterized complexity, the “hardness” of a problem is classified
according to the impact of a parameter for solving the prob-
lem. There, one often distinguishes the runtime dependency
of the parameter, e.g., levels of exponentiality (Lokshtanov,
Marx, and Saurabh 2011; Marx and Mitsou 2016) in the pa-
rameter, required for problem solving. Concretely, under the
reasonable Exponential Time Hypothesis (ETH) (Impagliazzo,
Paturi, and Zane 2001), propositional satisfiability (SAT)
is single exponential in the structural parameter treewidth,
wheras evaluating Quantified Boolean formulas (QBFs) of
quantifier depth two is (Lampis and Mitsou 2017) double
exponential1 in the treewidth k.

For ASP there is growing research on treewidth (Jakl, Pich-
ler, and Woltran 2009; Fichte et al. 2017; Fichte and Hecher
2019), which even involves grounding (Bichler, Morak, and
Woltran 2018; Bliem et al. 2020). Algorithms of these works
exploit structural restrictions (in form of treewidth) of a given
program, and often run in polynomial time in the program
size, while being exponential only in the treewidth. Intuitively,
treewidth gives rise to a tree decomposition, which allows
solving numerous NP-hard problems in parts, cf., divide-and-
conquer, and indicates the maximum number of variables
one has to investigate in such parts during evaluation. There
were also dedicated competitions (Dell et al. 2017) and no-
table progresses in SAT (Fichte, Hecher, and Zisser 2019;
Charwat and Woltran 2019) and other areas (Bannach and
Berndt 2019).

Naturally, there are numerous reductions of ASP (Clark
1977; Ben-Eliyahu and Dechter 1994; Lin and Zhao 2003;
Janhunen 2006; Alviano and Dodaro 2016) and extensions
thereof (Bomanson and Janhunen 2013; Bomanson 2017) to
SAT. These reductions have been investigated in the context
of resulting formula size and number of auxiliary variables.
However, structural dependency in form of, e.g., treewidth,

1Double exponentiality refers to runtimes of the form 22
O(k)

·n.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

485



has not been considered yet. These existing reductions cause
only sub-quadratic blow-up in the number of variables (auxil-
iary variables), which is unavoidable (Lifschitz and Razborov
2006) if the answer sets should be preserved (bijectively).
However, if one considers the structural dependency in form
of treewidth, existing reductions could cause quadratic or
even unbounded overhead in the treewidth. On the contrary,
we present a novel reduction for HCF programs that increases
the treewidth k at most sub-quadratically (k · log(k)). This
is indeed interesting as there is a close connection (Atse-
rias, Fichte, and Thurley 2011) between resolution-width and
treewidth, resulting in efficient SAT solver runs on instances
of small treewidth. As a result, our reduction could improve
solving approaches by means of SAT solvers, e.g., (Lin and
Zhao 2004). Then, we establish lower bounds under ETH,
for exploiting treewidth for concistency of normal programs.
This renders normal ASP “harder” than SAT. At the same
time we prove that one can not significantly improve the
reduction, i.e., avoid the sub-quadratic increase of treewidth.
Contributions. Concretely, we provide the following.
• First, we present a novel reduction from HCF programs

to SAT, which only requires linearly many auxiliary vari-
ables plus a number of auxiliary variables that is linear
in the instance size and slightly superexponential in the
treewidth of the SAT instance. This is achieved by guid-
ing the whole reduction along a tree decomposition of the
program. Thereby the reduction only slightly increases the
treewidth, i.e., the treewidth of the resulting SAT formula
is slightly larger than the treewidth of the given program.

• Then, we show that certainly we cannot avoid this increase
in the treewidth. Concretely, we establish that under the
widely believed Exponential Time Hypothesis (ETH), one
cannot decide ASP in time 2o(k·log(k)) ·n, with treewidth k
and program size n. This is in contrast to the runtime for
deciding SAT: 2O(k) ·n with treewidth k and size n of the
formula. As a result, this establishes that the consistency
of normal ASP programs is already harder than SAT using
treewidth. Note that this is surprising as both problems are
of similar hardness according to classical complexity (NP-
complete). Further, compared to known results restricting
to, e.g., modular reductions (Janhunen 2006), or involving
the need of auxiliary variables (Lifschitz and Razborov
2006), this shows that under ETH the increase of treewidth
is indeed unavoidable when considering consistency.

Related Work. For disjunctive ASP and extensions thereof,
algorithms have been proposed (Jakl, Pichler, and Woltran
2009; Pichler et al. 2014; Fichte et al. 2017) running in time
linear in the instance size, but double exponential in the
treewidth. Under ETH, one cannot significantly improve this
runtime, using a result (Lampis and Mitsou 2017) for QBFs
with quantifier depth two and a standard reduction (Eiter and
Gottlob 1995) from this QBF fragment to disjunctive ASP.
Unsurprisingly, SAT only requires single exponential run-
time (Samer and Szeider 2010) in the treewidth. However, for
normal and HCF programs only a slightly superexponential
algorithm (Fichte and Hecher 2019) for solving consistency
is known so far. Still, the question whether the slightly super-
exponentiality can be avoided was left open. The proposed

algorithm was used for counting answer sets involving pro-
jection (Gebser, Kaufmann, and Schaub 2009), which is at
least double exponential (Fichte et al. 2018) in the treewidth.

2 Preliminaries
Answer Set Programming (ASP). We assume familiar-
ity with propositional satisfiability (SAT) (Biere et al. 2009;
Kleine Büning and Lettman 1999), and follow standard defini-
tions of propositional ASP (Brewka, Eiter, and Truszczyński
2011; Janhunen and Niemelä 2016). Let `, m, n be non-
negative integers such that ` ≤ m ≤ n, a1, . . ., an be distinct
propositional atoms. Moreover, we refer by literal to an atom
or the negation thereof. A program Π is a set of rules of the
form a1∨· · ·∨a` ← a`+1, . . . , am,¬am+1, . . . ,¬an. For a
rule r, we let Hr := {a1, . . . , a`}, B+

r := {a`+1, . . . , am},
and B−r := {am+1, . . . , an}. We denote the sets of atoms
occurring in a rule r or in a program Π by at(r) :=
Hr ∪ B+

r ∪ B−r and at(Π) :=
⋃
r∈Π at(r). Program Π is

normal if |Hr| ≤ 1 for every r ∈ Π. The positive dependency
digraph DΠ of Π is the directed graph defined on the set of
atoms from

⋃
r∈ΠHr ∪B+

r , where for every rule r ∈ Π two
atoms a ∈ B+

r and b ∈ Hr are joined by an edge (a, b). A
head-cycle ofDΠ is an {a, b}-cycle2 for two distinct atoms a,
b ∈ Hr for some rule r ∈ Π. Program Π is head-cycle-free if
DΠ contains no head-cycle (Ben-Eliyahu and Dechter 1994).

An interpretation I is a set of atoms. I satisfies a rule r
if (Hr ∪ B−r ) ∩ I 6= ∅ or B+

r \ I 6= ∅. I is a model
of Π if it satisfies all rules of Π, in symbols I |= Π. For
brevity, we view propositional formulas as sets of formulas
(e.g., clauses) that need to be satisfied, and use the notion of
interpretations, models, and satisfiability analogously. The
Gelfond-Lifschitz (GL) reduct of Π under I is the program ΠI

obtained from Π by first removing all rules r withB−r ∩I 6= ∅
and then removing all ¬z where z ∈ B−r from the remaining
rules r (Gelfond and Lifschitz 1991). I is an answer set of
a program Π if I is a minimal model of ΠI . The problem of
deciding whether an ASP program has an answer set is called
consistency, which is ΣP

2-complete (Eiter and Gottlob 1995).
If the input is restricted to normal programs, the complexity
drops to NP-complete (Bidoı́t and Froidevaux 1991; Marek
and Truszczyński 1991). A head-cycle-free program Π can
be translated into a normal program in polynomial time (Ben-
Eliyahu and Dechter 1994). The following characterization
of answer sets is often invoked when considering normal
programs (Lin and Zhao 2003). Given a set A ⊆ at(Π) of
atoms. Then, a function ϕ : A → {0, . . . , |A| − 1} is an
ordering over A. Given a model I of a normal program Π
and an ordering ϕ over I . An atom a ∈ I is proven if there
is a rule r ∈ Π proving a, where a ∈ Hr with (i) B+

r ⊆ I ,
(ii) I∩B−r = ∅ and I∩(Hr\{a}) = ∅, and (iii) ϕ(b) < ϕ(a)
for every b ∈ B+

r . Then, I is an answer set of Π if (i) I is a
model of Π, and (ii) I is proven, i.e., every a ∈ I is proven.
This characterization vacuously extends to head-cycle-free
programs by results of Ben-Eliyahu and Dechter (1994).

Example 1. Consider the following program Π :=

2Let G = (V,E) be a digraph and W ⊆ V . Then, a cycle in G
is a W -cycle if it contains all vertices from W .
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{
r1︷ ︸︸ ︷

a ∨ b← ;

r2︷ ︸︸ ︷
c ∨ e← d;

r3︷ ︸︸ ︷
d ∨ e← b;

r4︷ ︸︸ ︷
b← e,¬d;

r5︷ ︸︸ ︷
d← ¬b}.

Observe that Π is head-cycle-free. Then, I := {b, c, d} is
an answer set of Π, since I |= Π, and we can prove with
ordering ϕ := {b 7→ 0, d 7→ 1, c 7→ 2} atom b by rule r1,
atom d by rule r3, and atom c by rule r2. Further answer
sets are {b, e}, {a, c, d}, and {a, d, e}.
Tree Decompositions (TDs). We assume familiarity with
graph terminology, cf., (Diestel 2012). A tree decompo-
sition (TD) (Robertson and Seymour 1986) of a given
graph G=(V,E) is a pair T =(T, χ) where T is a tree
rooted at root(T ) and χ assigns to each node t of T a
set χ(t) ⊆ V , called bag, such that (i) V =

⋃
t of T χ(t),

(ii) E ⊆ {{u, v} | t in T, {u, v} ⊆ χ(t)}, and (iii) for each
r, s, t of T , such that s lies on the path from r to t, we have
χ(r) ∩ χ(t) ⊆ χ(s). For every node t of T , we denote by
chldr(t) the set of child nodes of t in T . The bags χ≤t below t
consists of the union of all bags of nodes below t in T , includ-
ing t. We let width(T ) := maxt of T |χ(t)|−1. The treewidth
tw(G) of G is the minimum width(T ) over all TDs T of G.
TDs can be 5-approximated in single exponential time (Bod-
laender et al. 2016) in the treewidth. For a node t of T , we say
that type(t) is leaf if t has no children and χ(t) = ∅; join if t
has children t′ and t′′ with t′ 6= t′′ and χ(t) = χ(t′) = χ(t′′);
int (“introduce”) if t has a single child t′, χ(t′) ⊆ χ(t)
and |χ(t)| = |χ(t′)| + 1; forget if t has a single child t′,
χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)| + 1. If for every node
t of T , type(t) ∈ {leaf, join, int, forget}, the TD is called
nice. A TD can be turned into a nice TD (Kloks 1994)[Lem.
13.1.3] without increasing the width in linear time.
Example 2. Figure 1 illustrates a graph G and a TD T
of G of width 2, which is also the treewidth of G, since G
contains (Kloks 1994) a complete graph among vertices e,b,d.

Dynamic Programming on TDs. Solvers based on dynamic
programming (DP) evaluate a given input instance I in parts
along a given TD of a graph representation G of the instance.
Thereby, for each node t of the TD, intermediate results
are stored in a table τt. This is achieved by running a table
algorithm, which is designed for G, and stores in τt results
of problem parts of I , thereby considering tables τt′ for child
nodes t′ of t. DP works for many problems as follows.

1. Construct a graph representation G of I.
2. Compute a TD T = (T, χ) of G, which is obtainable via

heuristics, e.g., (Abseher, Musliu, and Woltran 2017).
3. Traverse the nodes of T in post-order (bottom-up tree

traversal of T ). At every node t of T during post-order
traversal, execute a table algorithm that takes as input
a bag χ(t), a certain bag instance It depending on the
problem, as well as previously computed child tables of t.
Then, the results of this execution is stored in table τt.

4. Finally, interpret table τn for the root node n of T in order
to output the solution to the problem for instance I.

In order to use TDs for ASP, we need dedicated graph rep-
resentations of programs (Jakl, Pichler, and Woltran 2009).
The primal graph3 GΠ of program Π has the atoms of Π as

3Analogously, the primal graph GF of a propositional Formula F

e a

d bc {c, d, e}t1 {a, b} t2

{b, d, e}t3

Figure 1: Graph G (left) and a tree decomposition T of G (right).

vertices and an edge {a, b} if there exists a rule r ∈ Π and
a, b ∈ at(r). Let T = (T, χ) be a TD of primal graph GΠ of
a program Π, and let t be a node of T . The bag program Πt

contains rules entirely covered by the bag χ(t). Formally,
Πt := {r | r ∈ Π, at(r) ⊆ χ(t)}.
Example 3. Recall program Π from Example 1. Observe that
graph G of Figure 1 is the primal graph of Π. Further, we
have Πt1 = {r2}, Πt2 = {r1}, and Πt3 = {r3, r4, r5}. Note
that in general a rule might appear in several bag programs.

Now, the missing ingredient for solving problems via dy-
namic programming along a given TD, is a suitable table
algorithm. Such algorithms have been already presented
for SAT (Samer and Szeider 2010) and ASP (Jakl, Pich-
ler, and Woltran 2009; Fichte et al. 2017; Fichte and Hecher
2019). We only briefly sketch the ideas of a table algorithm
using the primal graph that computes models of a given pro-
gram Π. Each table τt consists of rows storing interpretations
over atoms in the bag χ(t). Then, the table τt for a leaf node t
consist of the empty interpretation. For a node t with intro-
duced variable a ∈ χ(t), we store in τt interpretations of
the child table, but for each such interpretation we decide
whether a is in the interpretation or not, and ensure that Πt is
satisfied. When an atom b is forgotten in a forget node t, we
store interpretations of the child table, but projected to χ(t).
By the properties of a TD, it is then guaranteed that all rules
containing b have been processed so far. For a join node t,
we store in τt interpretations that are in both child tables of t.

3 Treewidth-aware Reductions to SAT
Having the basic concept of dynamic programming in mind,
we use this idea to design a reduction of a HCF program Π to
a SAT formula F , which is treewidth-aware. The reduction is
inspired by ideas of a DP algorithm for consistency of HCF
programs (Fichte and Hecher 2019) and the idea of level
mappings (Janhunen 2006). Intuitively, global orderings can
cause already huge blowup in the treewidth, e.g., reductions,
where all atoms are ordered at once, often cause long rules
with more than treewidth many atoms. As a result, we apply
these numbers only locally within the bags of a TD. More
concretely, our reduction is guided by a TD T = (T, χ) of
primal graph GΠ and uses core ideas of dynamic program-
ming along TD T to ensure only a slight increase in treewidth
of the resulting SAT formula. Intuitively, thereby the afore-
mentioned reduction takes care to keep the increase of width
local, i.e., the increase of width happens within the bags of T .
Concretely, if width(T ) is bounded by some valueO(k), the
treewidth of the resulting formula F is at most O(k · log(k)).

For encoding orderings along a TD, we need the following
notation. Given a TD T = (T, χ) of GΠ, and a node t of T .
We refer to an ordering over χ(t) by t-local ordering.

(in CNF) uses variables of F as vertices and adjoins two vertices a, b
by an edge, if there is a clause in F containing a, b.
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Definition 1. A T -local ordering is a set containing one t-
local ordering ϕt for every t of T such that there is an inter-
pretation I with (1) satisfiability: I |= Πt for every node t
of T , (2) provability: for every a ∈ I , there is a node t of T
and a rule r ∈ Πt proving a, and (3) compatibility: for ev-
ery nodes t, t′ of T and every a, b ∈ χ(t) ∩ χ(t′), whenever
ϕt(a) < ϕt(b) then ϕt′(a) < ϕt′(b).

For an ordering ϕ, we use the canonical t-local order-
ing ϕ̂t for each t of T as follows. Intuitively, atoms a ∈ χ(t)
with smallest ordering position ϕ(a) among all atoms in χ(t)
get ϕ̂t(a) = 0, second-smallest get value 1, and so on. For-
mally, we define ϕ̂t(a) := ordt(a, ϕ)− 1 for each a ∈ χ(t),
where ordt(a, ϕ) is the ordinal number (rank) of a according
to smallest ordering position ϕ(a) among χ(t).

Example 4. Consider program Π, answer set I = {b, c, d},
and ordering ϕ = {b 7→ 0, d 7→ 1, c 7→ 2} of Example 1.
Ordering ϕ can easily be extended to ordering ϕ′ := {a 7→
0, e 7→ 0, b 7→ 0, d 7→ 1, c 7→ 2} over at(Π). Then, using
TD T of GΠ, we can construct T -local ordering M :=
{ϕ̂t1 , ϕ̂t2 , ϕ̂t3} of ϕ′, where ϕ̂t1 = {e 7→ 0, d 7→ 1, c 7→ 2},
ϕ̂t2 = {a 7→ 0, b 7→ 0}, and ϕ̂t3 = {e 7→ 0, b 7→ 0, d 7→ 1}.
Consider a TD T ′ of GΠ, which is similar to T , but t1 has
a child node t′, whose bag is {c, e}. Then,M∪ {ϕ̂t′} with
ϕ̂t′ = {e 7→ 0, c 7→ 1} is a T ′-local ordering.

In our reduction, we use the following propositional vari-
ables. For each atom x ∈ at(Π), we use x also as proposi-
tional variable. For each atom x ∈ χ(t) of each node t of T ,
we use dlog(|χ(t)|)e many variables of the form bixt

form-
ing the i-th bit of the t-local ordering position (in binary)
of x. By the shortcut notation [[x]]t,j , we refer to the con-
junction of literals over bits bixt

for 1 ≤ i ≤ dlog(|χ(t)|)e
according to the representation of the number j in binary.
For atoms x, x′ ∈ χ(t) of node t of T , we use the following
notation to indicate that atom x is ordered before atom x′:

x ≺t x′ :=
∨

1≤i≤dlog(|χ(t)|)e

(bix′t∧¬b
i
xt
∧

∧
i<j≤dlog(|χ(t)|)e

(bjxt
−→ bjx′t

)).

Example 5. Consider Example 4 and the T -local order-
ingM = {ϕt1 , ϕt2 , ϕt3}. One could encode ordering posi-
tion ϕt1(e) = 0 using two bit variables b1et1 , b

2
et1

and forcing
it to false. This results in formula [[e]]t1,0 = ¬b1et1 ∧ ¬b

0
et1

.
Then, we formulate ϕt1(d) = 1 by [[d]]t1,1 = ¬b1dt1 ∧ b

0
dt1

,
and ϕt1(c) = 2 by [[c]]t1,2 = b1ct1 ∧ ¬b

0
ct1

. For the whole
resulting formula, e ≺t1 d, d ≺t1 c as well as e ≺t1 c hold.

Reduction for Consistency guided by a TD. For solving
consistency, we require to construct the following Formu-
las (1)–(6) below for each TD node t of T having child
nodes chldr(t) = {t1, . . . , t`}. Thereby, these formulas aim
at constructing T -local orderings along the TD T , where
Formulas (1) ensure satisfiability, Formulas (2) take care of
compatibility along the TD, and Formulas (6) enforce prov-
ability within a node, which is then guided along the TD by
Formulas (3) to (5).
Concretely, Formulas (1) ensure that the variables of the
constructed SAT formula F are such that all (bag) rules are
satisfied. Then, whenever in node t an atom x has a smaller

ordering position than an atom x′ (using ≺t), this must hold
also for the parent node of t and vice versa, cf., Formulas (2).
Formulas (3) guarantee, for nodes t removing bag atom x,
i.e., x ∈ χ(t) \ χ(t′), that x is proven if x is set to true.
Similarly, this is required for atoms x ∈ χ(n) that are in the
root node n = root(T ) and therefore never forgotten, cf.,
Formulas (4). At the same time we ensure by Formulas (5)
that an atom x is proven up to node t if and only if it is proven
up to some child node of t or freshly proven in node t. Finally,
Formulas (6) take care that an atom x is freshly proven in
node t if and only if there is at least one rule r ∈ Πt proving x.∨
a∈B+

r

¬a ∨
∨

a∈B−r ∪Hr

a for each r ∈ Πt (1)

(x ≺t′ x′)←→ (x ≺t x′) for each t′ ∈ chldr(t),
x,x′∈χ(t)∩χ(t′) (2)

x −→ px<t′ for each t′ ∈ chldr(t),
x ∈ χ(t′) \ χ(t) (3)

x −→ px<n for each x ∈ χ(n),
n = root(T ) (4)

px<t ←→ pxt ∨ (
∨

t′∈chldr(t),x∈χ(t′)

px<t′) for each x ∈ χ(t) (5)

pxt ←→
∨

r∈Πt,x∈Hr

(
∧

a∈B+
r

a ∧ x∧ for each x ∈ χ(t) (6)

(a ≺t x) ∧
∧

b∈B−r ∪(Hr\{x})

¬b)

Example 6. Recall program Π from Example 1, and TD T of
GΠ given in Figure 1. We briefly show Formula F for node t3.
Formulas Formula F
(1) ¬b ∨ d ∨ e; ¬e ∨ d ∨ b; d ∨ b
(2) (d ≺t1 e)↔ (d ≺t3 e); (e ≺t1 d)↔ (e ≺t3 d)
(3) c→ pc<t1 ; a→ pa<t2
(4) b→ pb<t3 ; d→ pd<t3 ; e→ pe<t3
(5) pb<t3 ↔ (pbt3 ∨ pb<t2);

pd<t3 ↔ (pdt3 ∨ pd<t1); pe<t3 ↔ (pet3 ∨ pe<t1)
(6) pbt3 ↔ [e ∧ b ∧ (e ≺t3 b) ∧ ¬d];

pdt3 ↔ [(b ∧ d ∧ (b ≺t3 d) ∧ ¬e) ∨ (d ∧ ¬b)];
pet3 ↔ [b ∧ e ∧ (b ≺t3 e) ∧ ¬d]

Next, we show that the reduction is indeed aware of the
treewidth and that the treewidth is only slightly increased.
Theorem 1 (Treewidth-Awareness). The reduction from a
HCF program Π and a nice TD T = (T, χ) of GΠ to SAT
formula F consisting of Formulas (1) to (6) only slightly
increases treewidth. Concretely, if k is the width of T , then
the treewidth of GF is at most O(k · log(k)).

Proof. We construct a TD T ′ = (T, χ′) of GF to show that
the width of T ′ increases only slightly (compared to k). To
this end, let t be a node of T with chldr(t) = 〈t1, . . . , t`〉
and let t̂ be the parent of t (if exists). We define B(t, x) :=
{bjxt

| x ∈ χ(t), 1 ≤ j ≤ dlog(|χ(t)|)e}. We inductively de-
fine χ′(t) := χ(t)∪(

⋃
x∈χ(t)B(t, x)∪B(t̂, x))∪{py<t′ , pxt |

t′ ∈ {t, t1, . . . , t`}, x ∈ χ(t), y ∈ χ(t′)}. Observe that in-
deed T ′ is a TD of GF . Further, |χ′(t)| ≤ k+k ·dlog(k)e·2+
k · (`+2). Thus, the width of nice T ′ is inO(k · log(k)).
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Later we will see the lower bound for consistency of nor-
mal ASP, which indicates that one cannot expect to signifi-
cantly improve this increase of treewidth. Next, we present
consequences for auxiliary variables and runtime.

Corollary 1 (Runtime). The reduction from a HCF pro-
gram Π and a nice TD T of GΠ to SAT formula F consisting
of Formulas (1) to (6) uses at most O(k · log(k) · h) many
variables and runs in timeO(k ·log(k)·h+|Π|), where k and
h form the width and the number of nodes of T , respectively.

Proof. The result follows from Theorem 1. Linear time in Π
can be obtained by slightly modifying Formulas (1) and (6)
such that each rule r ∈ Π is used in only one node t,
where r ∈ Πt′ , but r /∈ Πt, for some t′ ∈ chldr(t).

Note that a nice TD of GΠ of width k = tw(GΠ), having
only h = O(|at(Π)|) many nodes (Kloks 1994)[Lem. 13.1.2]
always exists. Further, since k · log(k) might be much smaller
than log(|at(Π)|), for some programs this reduction might
pay off compared to global or component-based orderings
used in tools like lp2sat (Janhunen 2006) or lp2acyc (Gebser,
Janhunen, and Rintanen 2014; Bomanson et al. 2016).
Correctness of the Reduction. Now, we discuss correctness
of our reduction, which establishes that T -local orderings
encoded by Formulas (1) to (6) follow ideas of the character-
ization of answer sets for HCF programs.

Theorem 2 (Correctness). The reduction from a HCF pro-
gram Π and a TD T = (T, χ) of GΠ to SAT formula F
consisting of Formulas (1) to (6) is correct. Concretely, for
each answer set of Π there is a model of F and vice versa.

Proof. “⇒”: Given an answer set M of Π. Then, there is an
ordering ϕ over at(Π), where every atom of M is proven.
Next, we construct a model I of F as follows. For each x ∈
at(Π), we let (c1) x ∈ I if x ∈ M . For each node t of T ,
and x ∈ χ(t): (c2) For every l ∈ [[x]]t,i with i = ϕ̂t(x), we
set l ∈ I if l is a variable. (c3) If there is a rule r ∈ Πt

proving x, we let both px<t, p
x
t ∈ I . Finally, (c4) we set

px<t ∈ I , if px<t′ ∈ I for t′ ∈ chldr(t).
It remains to show that I is indeed a model of F . By (c1),

Formulas (1) are satisfied by I . Further, by (c2) of I , the order
of ϕ is preserved among χ(t) for each node t of T , therefore
Formulas (2) are satisfied by I . Further, by definition of
TDs, for each rule r ∈ Π there is a node t with r ∈ Πt.
Consequently, M is proven with ordering ϕ, for each x ∈
M there is a node t and a rule r ∈ Πt proving x. Then,
Formulas (6) are satisfied by I due to (c3), and Formulas (5)
are satisfied by I due to (c4). Finally, by connectedness of
TDs, also Formulas (3) and (4) are satisfied.

“⇐”: Given any model I of F . Then, we construct an
answer set M of Π as follows. We set a ∈ M if a ∈ I
for any a ∈ at(Π). We define for each node t a t-local
ordering ϕt, where we set ϕt(x) to j for each x ∈ χ(t)
such that j is the decimal number of the binary number
for x in t given by I . Concretely, ϕt(x) := j, where j
is such I |= [[x]]t,j . Then, we define an ordering ϕ itera-
tively as follows. We set ϕ(a) := 0 for each a ∈ at(Π),
where there is no node t of T with ϕt(b) < ϕt(a). Then,
we set ϕ(a) := 1 for each a ∈ at(Π), where there is

no node t of T with ϕt(b) < ϕt(a) for some b ∈ χ(t)
not already assigned in the previous iteration, and so on.
In turn, we construct ϕ iteratively by assigning increas-
ing values to ϕ. Observe that ϕ is well-defined, i.e., each
atom a ∈ at(Π) gets a unique value since it cannot be
the case for two nodes t, t′ and atoms x, x′ ∈ χ(t) ∩ χ(t′)
that ϕt(x) < ϕt(x

′), but ϕt′(x) ≥ ϕt′(x
′). Indeed, this is

prohibited by Formulas (2) and connectedness of T ensuring
that T restricted to x is still connected.

It remains to show that ϕ is an ordering for Π proving M .
Assume towards a contradiction that there is an atom a ∈M
that is not proven. Observe that either a is in the bag χ(n)
of the root node n of T , or it is forgotten below n. In both
cases we require a node t such that px<t /∈ I by Formulas (4)
and (3), respectively. Consequently, by connectedness of T
and Formulas (5) there is a node t′, where pxt′ ∈ I . But then,
since Formulas (6) are satisfied by I , there is a rule r ∈ Πt′

proving a with ϕt′ . Therefore, since by construction of ϕ,
there cannot be a node t of T with x, x′ ∈ χ(t), ϕt(x) <
ϕt(x

′), but ϕ(x) ≥ ϕ(x′), r is proving a with ϕ.

Strengthening the SAT Formula. Next, we strengthen the
previous reduction to ensure to get rid of duplicate T -local
orderings for a particular answer set of Π.

In Formulas (7), we ensure that if a variable x ∈ at(Π) is
set to false, then its ordering position is zero. Formulas (8)
make sure that if the position of x is set to i ≥ 1 in node t,
there has to be a bag atom y having position i− 1. Intuitively,
if this is not the case we could shift the position of x from i
to i−1. Finally, Formulas (9) ensure that whenever in a node t
there is a rule r ∈ Πt with x ∈ Hr and x has position i ≥ 1,
either there is at least one atom y ∈ B+

r having position i−1,
or r is not proving x.

¬x −→
∧

1≤j≤dlog(|χ(t)|)e

¬bjxt
for each x ∈ χ(t) (7)

[[x]]t,i −→
∨

y∈χ(t)\{x}

[[y]]t,i−1 for each x ∈ χ(t),
1 ≤ i < |χ(t)| (8)∧

r∈Πt,x∈Hr,1≤i<|χ(t)|

([[x]]t,i −→
∨

a∈B+
r

¬a ∨ (a 6≺t x) ∨
∨

b∈B−r ∪(Hr\{x})

b∨

∨
y∈B+

r

[[y]]t,i−1) for each x ∈ χ(t) (9)

In general, we do not expect to get rid of all redundant
T -local orderings for an answer set, though. The reason for
this expectation lies in the fact that the different (chains of)
rules required for setting the position for an atom a might be
“spread” among the whole tree decomposition. Consequently,
one would need to compare different, absolute values of
orderings, cf., (Janhunen 2006), instead of the ordering po-
sitions relative to one TD node as presented here, which
requires to store for each atom in the worst case numbers up
to |at(Π)|. Obviously, this number is then not bounded by
the treewidth, and one cannot encode it without increasing
the treewidth in general. However, if for each answer set M
of Π, and every a ∈ M , there can be only one rule r ∈ Π,
where a ∈ Hr ∩M and M ∩ (Hr \ {a}) = ∅, that is satis-
fied by M , then there is a bijective correspondence between
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s1 s2 s3

d1 d2 d3

x y
z

{s1, x}t1 {s2, x, y}
t3{d2, y}t2

{y, d3, z}
t5

{s3, z} t4

{x, y, d1}t6

Figure 2: An instance I = (G,P ) (left) of the DISJOINT PATHS
PROBLEM and a TD of G (right).

answer sets of Π and models of Formulas (1) to (9). One
example of such programs is constructed in the next section.

4 Why ASP Consistency is Harder than SAT
This section concerns the hardness of ASP consistency when
considering treewidth. The high-level reason for ASP being
harder than SAT when assuming bounded treewidth, lies
in the issue that a TD, while capturing the structural de-
pendencies of a program, might force an evaluation that is
completely different from the orderings proving answer sets.
Consequently, during dynamic programming for ASP, one
needs to store in each table τt for each node t during post-
order traversal, in addition to an interpretation (candidate
answer set), also an ordering among the atoms in those in-
terpretations. We show that under reasonable assumptions in
complexity theory, this worst-case cannot be avoided. Then,
the resulting runtime consequences cause ASP to be slightly
harder than SAT, where in contrast to ASP storing a table τt
of only assignments for each node t suffices.

We show our novel hardness result by reducing from the
(DIRECTED) DISJOINT PATHS PROBLEM, which is a graph
problem defined as follows. Given a directed graph G =
(V,E), and a set P ⊆ V × V of disjoint pairs of the
form (si, di) consisting of source si and destination di,
where si, di ∈ V such that each vertex occurs at most once
in P , i.e.,

∣∣∣⋃(si,di)∈P {si, di}
∣∣∣ = 2 · |P |. Then, (G,P ) is an

instance of the DISJOINT PATHS PROBLEM, asking whether
there exist |P | many (vertex-disjoint) paths from si to di
for 1 ≤ i ≤ |P |. Concretely, each vertex of G is allowed to
appear in at most one of these paths. For the ease of presenta-
tion, we assume without loss of generality (Lokshtanov, Marx,
and Saurabh 2011) that sources si have no incoming edge
(x, si), and destinations di have no outgoing edge (di, x).
Example 7. Figure 2 (left) shows an instance I = (G,P ) of
the DISJOINT PATHS PROBLEM, where P consists of pairs
of the form (si, di). The only solution to I is both emphasized
and colored in red. Figure 2 (right) depicts a TD of G.

While under ETH, SAT cannot be solved in time 2o(k) ·
poly(|at(F )|), where k is the treewidth of the primal graph
of a given propositional formula F , the DISJOINT PATHS
PROBLEM is considered to be even harder. Concretely, the
problem has been shown to be slightly superexponential as
stated in the following proposition.
Proposition 1 ((Lokshtanov, Marx, and Saurabh 2011)). Un-
der ETH, the DISJOINT PATHS PROBLEM is slightly superex-
ponential, i.e., any instance (G,P ) with G = (V,E) cannot
be solved in time 2o(k·log(k)) · poly(|V |), where k = tw(G).

It turns out that the DISJOINT PATHS PROBLEM is a
suitable problem candidate for showing the hardness of

{s2, x, y}t2

{s2, d2, y}t1

{y, d3, z}
t4

{s3, d3, z} t3

{s1, d1, x, y}t5

{s3, d3, y, z} t1

{s3, d3, y} t2

{s1, d1, s2, d2, s3, d3, x, y}
t3

Figure 3: A pair-respecting TD (left), and a pair-connected TD T
(right) of (G,P ) of Figure 2.

ASP. Next, we require the following notation of open pairs,
whose result is then applied in our reduction. Given an in-
stance (G,P ) of the DISJOINT PATHS PROBLEM, a TD T =
(T, χ) of G, and a node t of T . Then, a pair (s, d) ∈ P is
open in node t, if either s ∈ χ≤t (“open due to source s’’)
or d ∈ χ≤t (“open due to destination d”), but not both.
Proposition 2 ((Scheffler 1994)). An instance (G,P ) of
the DISJOINT PATHS PROBLEM does not have a solution if
there is a TD T = (T, χ) of G and a bag χ(t) with more
than |χ(t)| many pairs in P that are open in a node t of T .

Proof. The result, cf., (Scheffler 1994), boils down to the
fact that each bag χ(t), when removed from G, results in a
disconnected graph consisting of two components. Between
these components can be at most |χ(t)| different paths.

Preparing pair-connected TDs. Before we present the ac-
tual reduction, we need to define a pair-respecting tree de-
composition of an instance (G,P ) of the DISJOINT PATHS
PROBLEM. Intuitively, such a TD of G additionally ensures
that each pair in P is encountered together in some TD bag.
Definition 2. A TD T = (T, χ) of G is a pair-respecting
TD of (G,P ) if for any pair p = (s, d) with p ∈ P , (1)
whenever p is open in a node t due to s, or due to d, then s ∈
χ(t), or d ∈ χ(t), respectively. Further, (2) whenever p is
open in a node t, but not open in the parent t′ of t (“p is
closed in t′”), both s, d ∈ χ(t′).

We observe that such a pair-respecting TD can be com-
puted with only a linear increase in the (tree)width in the
worst case. Concretely, we can turn any TD T = (T, χ) of G
into a pair-respecting TD T ′ = (T, χ′) of (G,P ). Thereby,
the tree T is traversed for each t of T in post-order, and ver-
tices of P are added to χ(t) accordingly, resulting in χ′(t),
such that conditions (1) and (2) of pair-respecting TDs are
met. Observe, that this doubles the sizes of the bags in the
worst case, since by Proposition 2 there can be at most bag-
size many open pairs.
Example 8. Figure 3 (left) shows a pair-respecting TD
of (G,P ) of Figure 2, which can be obtained by transforming
the TD of Figure 2 (right), followed by simplifications.

Given a sequence σ of pairs of P in the order of closure
with respect to the post-order of T . We refer to σ by the
closure sequence of T . We denote by p ∈i σ that pair p is
the pair closed i-th in the order of σ. Intuitively, e.g., the first
pair p ∈1 σ indicates that pair p ∈ P is the first to be closed
when traversing T in post-order.
Definition 3. A pair-connected TD T =(T, χ) of (G,P ) is
a pair-respecting TD of (G,P ), if, whenever a pair p ∈i
σ with i>1 is closed in a node t of T , also for the pair
(s, d) ∈i−1 σ closed directly before p in σ, both s, d ∈ χ(t).
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We can turn any pair-respecting, nice TD T ′=(T, χ′) of
width k into a pair-connected TD T ′′=(T, χ′′) with con-
stant increase in the width. Let therefore pair p ∈i σ be
closed (i>1) in a node t, and pair (s, d) ∈i−1 be closed
before p in node t′. Intuitively, we need to add s, d to all
bags χ′(t′), . . . , χ′(t) of nodes encountered after node t′ and
before node t of the post-order tree traversal, resulting in χ′′.
However, the width of T ′′ is at most k+ 3 · |{s, d}| = k+ 6,
since in the tree traversal each node of T is passed at most
3 times, namely when traversing down, when going from
the left branch to the right branch, and then also when go-
ing upwards. Indeed, to ensure T ′′ is a TD (connectedness
condition), we add at most 6 additional atoms to every bag.

Example 9. Figure 3 (right) depicts a pair-connected TD
of (G,P ) of Figure 2, obtainable by transforming the pair-
respecting TD of Figure 3 (left), followed by simplifications.

4.1 Reducing from DISJOINT PATHS to ASP
In this section, we show the main reduction R of this paper,
assuming any instance I = (G,P ) of the DISJOINT PATHS
PROBLEM. Before we construct our program Π, we require a
nice, pair-connected TD T = (T, χ) of G, whose width is k
and a corresponding closure sequence σ. By Proposition 2,
for each node t of T , there can be at most k many open pairs
of P , which we assume in the following. If this was indeed
not the case, we can immediately output, e.g., {a← ¬a}.

Then, we use the following atoms in our reduction. Atoms
eu,v, or neu,v indicate that edge (u, v) ∈ E is used, or un-
used, respectively. Then, ru for any vertex u ∈ V indicates
that u is reached via used edges, and r∗d are auxiliary reacha-
bility atoms for destination vertices d (i.e., where (s, d) ∈ P ).
Finally, we also need atom fut for a node t of T , and ver-
tex u ∈ χ(t), to indicate that vertex u is already finished in
node t, i.e., u has one used, outgoing edge. The presence of
this atom fut in an answer set prohibits to take additional
edges of u in parent nodes of t, which is needed due to the
need of disjoint paths of the DISJOINT PATHS PROBLEM.

The instance Π = R(I, T ) constructed by reduction R
consists of three program parts, namely reachability ΠR, link-
ing ΠL of two pairs in P , as well as checking ΠC of disjoint-
ness of constructed paths. Consequently, Π = ΠR∪ΠL∪ΠC .
All three programs ΠR, ΠL, and ΠC are guided along TD T ,
which ensures that the width of Π is only linearly increased.
Note that this has to be carried out carefully. In particular,
since the number of atoms of the form eu,v using only ver-
tices u, v that appear in one bag, can be already quadratic
in the bag size. The goal of this reduction, however, admits
only a linear overhead in the bag size. Consequently, we are,
e.g., not allowed to construct rules in Π that require more
than O(k) edges in one bag of a TD of GΠ.

To this end, let the ready edges Ere
t in node t be the set

of edges (u, v) ∈ E not present in t anymore, i.e., {u, v} ⊆
χ(t′) \ χ(t) for any child node t′ ∈ chldr(t). Further, let Ere

n
for the root node n = root(T ) additionally contain also all
edges of n, i.e., E ∩ (χ(n)× χ(n)). Intuitively, ready edges
for t will be processed in node t. Note that each edge occurs
in exactly one set of ready edges. Further, for nice TDs T ,
we always have |Ere

t | ≤ k, i.e., ready edges are linear in k.

Example 10. Recall instance I=(G,P ) with G=(V,E) of
Figure 2, and pair-connected TD T =(T, χ) of I of Figure 3
(right). Then, Ere

t1=∅, Ere
t2={(y, z), (z, y), (z, d3), (s3, z)},

since z /∈ χ(t2), and Ere
t3=E \ Ere

t2 for root t3 of T .

Reachability ΠR. Program ΠR is constructed as follows.
eu,v ← ru,¬neu,v for each (u, v) ∈ Ere

t (10)
neu,v ← ¬eu,v for each (u, v) ∈ Ere

t (11)
rv ← eu,v for each (u, v) ∈ Ere

t , (s, v) /∈ P (12)
r∗d ← eu,d for each (u, d) ∈ Ere

t , (s, d) ∈ P (13)

Rules (10) and (11) ensure that there is a partition of edges
in used edges eu,v and unused edges neu,v. Additionally,
Rules (10) take care that only edges of adjacent, reachable
vertices are used. Naturally, this requires that initially at
least one vertex is reachable (constructed below). Rules (12)
and (13) ensure reachability rv and r∗v over used edges eu,v
for non-destination vertex v and destination v, respectively.

Linking of pairs ΠL. Program ΠL is constructed as follows.
← ¬rd for each (s, d) ∈ P (14)
rs1 ← for (s1, d) ∈1 σ (15)
rsi ← rdi−1

for each (si, d) ∈i σ, (s, di−1)∈i−1 σ (16)
rd1 ← r∗d1 for (s, d1) ∈1 σ (17)

rdi ← r∗di , rdi−1 for each (s, di)∈i σ, (s′, di−1)∈i−1σ (18)

Rules (14) make sure that, ultimately, destination vertices of
all pairs are reached. As an initial, reachable vertex, Rule (15)
sets the source vertex s reachable, whose pair is closed first.
Then, the linking of pairs is carried out along the TD in the
order of closure, as given by σ. Thereby, Rules (16) concep-
tually construct auxiliary links (similar to edges) between
different pairs, in the order of σ, which is guided along the
TD to ensure only a linear increase in treewidth of GΠ of
the resulting program Π. Interestingly, these additional de-
pendencies, since guided along the TD, do not increase the
treewidth by much as we will see in the next subsection.
Rule (17) makes sure that if destination vertex d1 of the pair
closed first is auxiliary-reached (r∗d1 ), reachability rd1 is set.

Then, it is crucial that we prevent a source vertex si of a
pair (si, di) ∈i σ from reaching a destination vertex dj of a
pair (sj , dj) ∈j σ preceding (si, di) in σ, i.e., j < i. To this
end, we need to construct parts of cycles that prevent this.
Concretely, if some source si reaches to dj , i.e., dj is reach-
able via si, the goal is to have a cyclic reachability from dj
to si, with no external support for corresponding reachability
atoms. Actually, Rules (16) also have the purpose of aiding
in construction of these potential positive cycles. Together
with Rules (18) we achieve that if dj is reachable, this cannot
be due to si, since reachability of di−1, di−2, . . . , dj (there-
fore si itself) is required for reachability of si. Consequently,
assuming that there is no external support for these reachabil-
ity atoms (which we will ensure in program ΠC below), and
that if si is reachable, dj is reachable, we end up with cyclic
reachability without external support. Figure 4 shows the
positive dependency graph DRL of Rules (16)–(18), where
pairs (si, di) ∈i σ, discussed in the following example.
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rs1 rs2 rs3 . . .rs|P |−1
rs|P |

rd1
r∗di :

rd2 rd3 . . .
. . .
rd|P |−1

rd|P |

Figure 4: Positive dependency graph DRL of Rules (16)–(18) con-
structed for any closure sequence σ such that (si, di) ∈i σ.

Example 11. Consider the dependency graph DRL of Rules
(16) and (18), as depicted in Figure 4. Observe that when-
ever si reaches some dj with j < i, this causes a cy-
cle C=rsi , . . . , rdj , rdj+1

, . . . , rdi−1
, rsi over reachability

atoms (cyclic dependency). If each vertex u of G can have at
most one outgoing edge, i.e., only one atom eu,v in an answer
set of Π = R(I, T ), no atom of C can be proven (no external
support). Note that C could also be constructed by adding
O(|P |2) many edges from di to dj for j > i. However, this
would cause an increase of structural dependency for di, and
in fact, the treewidth increase would be beyond linear.

Checking of disjointness ΠC . Finally, we create rules in Π
that enforce at most one outgoing, used edge per vertex. This
is required to ensure that we do not use a vertex twice, as
required by the DISJOINT PATHS PROBLEM. We do this by
guiding the information, whether the corresponding outgoing
edge was used, via atoms fut along the TD to ensure that the
treewidth is not increased significantly. Having at most one
outgoing, used edge per vertex ofG further ensures that when
a source of a pair p reaches a destination of a pair preceding p
in σ, then no atom of the resulting cycle as constructed in ΠL
will be provable (no external support). Consequently, in the
end every source of p has to reach the destination of p by the
pigeon hole principle. Program ΠC is constructed for every
node t with t′, t′′∈ chldr(t), if t has child nodes, as follows.
fut ← eu,v for each (u, v) ∈ Ere

t , u ∈ χ(t) (19)

fut ← fut′ for each u ∈ χ(t) ∩ χ(t′) (20)

← fut′ , f
u
t′′ for each u ∈ χ(t′) ∩ χ(t′′), t′ 6= t′′ (21)

← fut′ , eu,v for each (u, v) ∈ Ere
t , u ∈ χ(t′) (22)

← eu,v, eu,w for each (u, v), (u,w) ∈ Ere
t, v 6=w (23)

Rules (19) ensure that the finished flag fut is set for used
edges eu,v . Then, this information of fut′ is guided along the
TD from child node t′ to parent node t by Rules (20). If for
a vertex u ∈ V we have fut′ and fut′′ for two different child
nodes t′, t′′ ∈ chldr(t), this indicates that two different edges
were encountered both below t′ and below t′′. Consequently,
this situation is avoided by Rules (21). Rules (22) make sure
to disallow additional edges for vertex u in a TD node t, if
the flag fut′ of child node t′ is set. Finally, Rules (23) prohibit
two different edges for the same vertex u within a TD node.
Example 12. Recall instance I = (G,P ) with G = (V,E)
of Figure 2, pair-connected TD T = (T, χ) of I of Figure 3
(right), andEre

t2 = {(y, z), (z, y), (z, d3), (s3, z)}. We briefly
present the construction of ΠC for node t2.
Rules ΠL
(19) fyt2 ← ey,z; fs3t2 ← es3,z
(20) fs3t2 ← fs3t1 ; fd3t2 ← fd3t1 ; fyt2 ← fyt1
(22) ← fyt1 , ey,z;← fzt1 , ez,y;← fzt1 , ez,d3 ;← fs3t1 , es3,z
(23) ← ez,y, ez,d3

4.2 Correctness and Runtime Analysis
First, we show that the reduction is indeed correct, followed
by a result stating that the treewidth of the reduction is at
most linearly worsened, which is crucial for the runtime
lower bound to hold. Then, we present the runtime and the
(combined) main result of this paper.
Lemma 1 (≤ 1 Outgoing Edge). Given any instance I =
(G,P ) of the DISJOINT PATHS PROBLEM, and any answer
set M of R(I, T ) using any pair-connected TD T of (G,P ).
Then, there cannot be two edges of the form eu,v, eu,w ∈M .

Proof. Assume towards a contradiction that there are three
different vertices u, v, w ∈ V with eu,v, eu,w ∈M . Then, by
Rules (23) there cannot be a node t with (u, v), (u,w) ∈ Ere

t .
However, by the definition of TDs, there are nodes t′, t′′
with (u, v) ∈ Ere

t′ and (u,w) ∈ Ere
t′′ . By connectedness of

TDs, u appears in each bag of any node of the path X be-
tween t′ and t′′. Then, either t′ is an ancestor of t′′ (or vice
versa, symmetrical) or there is a common ancestor t. In the
former case, fut′′ is justified by Rules (19) and so is fu

t̂
on each

node t̂ ofX by Rules (20) and therefore ultimately Rules (22)
fail due to fut′ , eu,w ∈ M . In the latter case, fut′′ , f

u
t′ is jus-

tified by Rules (19) and so is fu
t̂

on each node t̂ of X by
Rules (20). Then, Rules (21) fail due to fut′ , f

u
t′′ ∈M .

Theorem 3 (Correctness). Reduction R as proposed in this
section is correct. More concretely, given an instance I =
(G,P ) of the DISJOINT PATHS PROBLEM, and a pair-
connected TD T = (T, χ) of G. Then, I has a solution
if and only if the program R(I, T ) admits an answer set.

Proof. “⇒”: Given any positive instance I of DIS-
JOINT PATHS PROBLEM. Then, there are disjoint paths
P1, . . . , Pi, . . . P|P | from s1 to d1, . . . , si to di, . . . ,
s|P | to d|P | for each pair (si, di) ∈ P . Assuming fur-
ther pair-connected TD T of I , we construct in the
following an answer set M of Π = R(I, T ). To
this end, we collect reachable atoms A := {u |
u appears in some Pi, 1 ≤ i ≤ |P |} and used edges U :=
{(u, v) | v appears immediately after u in some Pi, 1 ≤ i ≤
|P |}. Then, we construct answer set candidate M := {r∗di |
1 ≤ i ≤ |P |}∪{ru | u ∈ A}∪{eu,v | (u, v) ∈ U}∪{neu,v |
(u, v) ∈ E \ U} ∪ {fut | (u, v) ∈ U ∩ Ere

t } ∪ {fut |
(u, v) ∈ U ∩ Ere

t′ , u ∈ χ(t), t′ is a descendant of t in T}. It
remains to show that M is an answer set of Π. Observe
that M indeed satisfies all the rules of ΠR. In particular, by
construction, we have reachability rv for every vertex v of
every pair in P , and the partition in used edges eu,v and
unused edges neu,v is ensured. Further, ΠL is satisfied, as,
again by construction, for each vertex v of every pair in P ,
we have rv ∈ M . Finally, ΠC is satisfied as by construc-
tion fut ∈ M iff eu,v ∈ M ∩ Ere

t or eu,v ∈ M ∩ Ere
t′ for

any descendant node t′ of t with u ∈ χ(t). It is easy to see
thatM is indeed a⊆-smallest model of the reduct ΠM , since,
atoms for used and unused edges form a partition of E.

“⇐”: Given any answer set M of Π. First, we observe that
we can only build paths from sources towards destinations,
as sources have only outgoing edges and destinations allow
only incoming edges. Further, by construction, vertices can

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

492



only have one used, outgoing edge, cf., Lemma 1. Conse-
quently, if a vertex had more than one used, incoming edge,
one cannot match at least one pair of P (by combinatorial
pigeon hole principle). Hence, in an answer set M of Π,
there is at most one incoming edge per vertex. By construc-
tion of Π, in order to reach each di with (si, di) ∈i σ, si
cannot reach some dj′ with j′ < i. Towards a contradiction
assume otherwise, i.e., si reaches dj′ . But then, by construc-
tion of the reduction, we also have a reachable path from dj′
to si, consisting of dj′ , dj′+1, . . . , di−1, si. Since every ver-
tex has at most one incoming edge, dj′ cannot have any
other justification for being reachable, nor does any source
on this path. Hence, this forms a cycle without external sup-
port, which can not be present in an answer set. Therefore,
si only reaches di, since otherwise there would be at least
one vertex sj required to reach si′ with (si′ , di′) ∈i′ σ,
i′ < j. Consequently, we construct a witnessing path Pi
for each pair (s, d) ∈i σ as follows: Pi := s, p1, . . . , pm, d
where {es,p1 , ep1,p2 , . . . , epm−1,pm , epm,d} ⊆ M . Thus, Pi
starts with s, follows used edges in M and reaches d.

Lemma 2 (Treewidth-Awareness). Given an instance I =
(G,P ) of the DISJOINT PATHS PROBLEM, and a pair-
connected, nice TD T of I of width k. Then, the treewidth
of GΠ, where Π = R(I, T ) is obtained byR, is at mostO(k).

Proof. Given any pair-connected, nice TD T = (T, χ)
of I = (G,P ). Since T is nice, a node in T has at most ` = 2
many child nodes. From T we construct a TD T ′ = (T, χ′)
of GΠ. Thereby we set for every node t of T , χ′(t) :=
{ru, fut | u ∈ χ(t)} ∪ {r∗d | d ∈ χ(t), (s, d) ∈ P} ∪
{eu,v, neu,v, ru, rv, fut′ | (u, v) ∈ Ere

t , t
′ ∈ chldr(t), u ∈

χ(t′)} ∪ {fut′ , fut | t′ ∈ chldr(t), u ∈ χ(t) ∩ χ(t′)}. Ob-
serve that T ′ is a valid TD of GΠ. Further, by construction we
have |χ′(t)| ≤ 2 · |χ(t)|+ |χ(t)|+(4+`) ·k+(`+1) · |χ(t)|,
since |Ere

t | ≤ k. The claim sustains for nice TDs (` = 2).

Corollary 2 (Runtime). Reduction R as proposed in this
section runs for a given instance I = (G,P ) of the DISJOINT
PATHS PROBLEM with G = (V,E), and a pair-connected,
nice TD T of I of width k and h many nodes, in timeO(k ·h).

Next, we are in the position of showing the main result,
namely the normal ASP lower bound.

Theorem 4 (Lower bound). Given an arbitrary normal or
HCF program Π, where k is the treewidth of the primal graph
of Π. Then, unless ETH fails, the consistency problem for Π
cannot be solved in time 2o(k·log(k)) · poly(|at(Π)|).

Proof. Let (G,P ) be an instance of the DISJOINT PATHS
PROBLEM. First, we construct (Bodlaender et al. 2016) a nice
TD T of G = (V,E) of treewidth k in time ck · |V | for some
constant c such that the width of T is at most 5k + 4. Then,
we turn the result into a pair-connected TD T ′ = (T ′, χ′),
thereby having width at most k′ = 2 · (5k + 4) + 6. Then,
we construct program Π = R(I, T ′). By Lemma 2, the
treewidth of GΠ is in O(k′), which is in O(k). Assume to-
wards a contradiction that consistency of Π can be decided in
time 2o(k·log(k)) · poly(|at(Π)|). By correctness of R (Theo-
rem 3), this solves (G,P ), contradicting Proposition 1.

Our reduction works by construction for any pair-
connected TD. Consequently, this immediately yields a lower
bound for pathwidth, which is similar to treewidth, but admits
only path decompositions (TDs whose tree is just a path).
Corollary 3 (Pathwidth lower bound). Given any normal
or HCF program Π, where k is the pathwidth of the primal
graph of Π. Then, unless ETH fails, the consistency problem
for Π cannot be solved in time 2o(k·log(k)) · poly(|at(Π)|).

From Theorem 4, we follow that a general reduction from
normal or HCF programs to SAT formulas can probably not
avoid the treewidth (pathwidth) overhead, which renders our
reduction from the previous section ETH-tight.
Corollary 4 (ETH-tightness of the Reduction to SAT). Un-
der ETH, the increase of treewidth of the reduction using
Formulas (1) to (6) cannot be significantly improved.
Proof. Assume towards a contradiction that one can re-
duce from an arbitrary normal ASP program Π, where k
is the treewidth of GΠ to a SAT formula, whose treewidth
is in o(k · log(k)). Then, this contradicts Theorem 4, as
we can use an algorithm (Samer and Szeider 2010; Fichte,
Hecher, and Zisser 2019) for SAT being single exponen-
tial in the treewidth, thereby deciding consistency of Π in
time 2o(k·log(k)) · poly(|at(Π)|).

5 Discussion, Conclusion, and Future Work
The curiosity of studying and determining the hardness of
ASP and the underlying reasons has attracted the attention
of the KR community for a long time. This paper discusses
this question from a different angle, which hopefully will
provide new insights into the hardness of ASP and foster
follow-up work. The results in this paper indicate that, at
least from a structural point of view, deciding the consistency
of ASP is already harder than SAT, since ASP programs
might compactly represent structural dependencies within the
formalism. More concretely, compiling the hidden structural
dependencies of a program to a SAT formula, measured in
terms of the well-studied parameter treewidth, most certainly
causes a blow-up of the treewidth of the resulting formula.
In the light of a known result (Atserias, Fichte, and Thurley
2011) on the correspondence of treewidth and the resolution
width applied in SAT solving, this reveals that ASP consis-
tency might be indeed harder than solving SAT. We further
presented a reduction from ASP to SAT that is aware of the
treewidth in the sense that the reduction causes not more than
this inevitable blow-up of the treewidth in the worst-case.

The work in this paper gives rise to plenty of future work.
On the one hand, we are currently working on the comparison
of different treewidth-aware reductions to SAT and variants
thereof, and how these variants perform in practice. Further,
we are curious about treewidth-aware reductions to SAT,
which preserve answer sets bijectively or are modular (Jan-
hunen 2006). We hope this work might reopen the quest
to study the correspondence of treewidth and ASP solving
similarly to (Atserias, Fichte, and Thurley 2011) for SAT.
Also investigating further structural parameters “between”
treewidth and directed variants of treewidth could lead to new
insights, since for ASP directed measures (Bliem, Ordyniak,
and Woltran 2016) often do not yield efficient algorithms.
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