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Abstract

Parikh developed the notion of syntax splitting to describe
belief sets with independent parts. He also formulated a pos-
tulate demanding that belief revisions respect syntax split-
tings in belief sets. The concept of syntax splitting was later
transferred to epistemic states with total preorders and rank-
ing functions by Kern-Isberner and Brewka along with cor-
responding postulates for belief revisions. Besides revision,
contraction is also a central operation in the field of general
belief change. In this paper, we analyse belief contractions
with respect to syntax splitting. Based on the work on syn-
tax splitting for revision, we develop syntax splitting pos-
tulates for contractions on ranking functions, on epistemic
states with total preorder, and on belief sets. Finally, we eval-
uate different contractions from the literature, namely mod-
erate contraction, natural contraction, lexicographic contrac-
tion, and c-contractions with respect to the newly developed
contraction postulates.

1 Introduction
Any intelligent agent must be able to represent her beliefs
and to reason with it, and in any evolving environment these
beliefs must evolve accordingly. Adding new beliefs to ex-
isting beliefs while maintaining consistency is called belief
revision. A belief revision might require the removal of
some of the agent’s existing beliefs, that contradicts the new
information. Removing beliefs (e.g. because some infor-
mation added earlier is from an unreliable source) is called
belief contraction.

Many different postulates have been proposed for belief
change. The best known postulates are probably the AGM
postulates for the revision and contraction of belief sets (Al-
chourrón, Gärdenfors, and Makinson 1985). Though this
approach is widely accepted, it is also criticised. One rea-
son is that the AGM framework does not capture iterative
changes properly, i.e., applying several changes after each
other to a belief set. To address this, additional revision pos-
tulates were proposed (Darwiche and Pearl 1997). Along
with this, Darwiche and Pearl developed a framework based
on epistemic states with total preorders. Later, correspond-
ing contraction postulates were proposed in (Konieczny and
Pino Pérez 2017). Another drawback of the AGM frame-
work is that the revisions in general do not respect the in-
ternal structure of belief sets. Parikh noted that a belief set

might contain independent beliefs about different parts of
the signature (Parikh 1999).
Example 1. Consider an agent having the following beliefs
about a certain object: (1) If it is a car, it can move. (2) It
is blue. While the belief about the object being a car and
its ability to move is connected, the colour of the object is
independent of the objects type and ability to move. If the
agent learns that the object is in fact yellow, it would be
unreasonable to change the belief that cars can move.

Parikh formalized this by the notion of syntax split-
ting and formulated a postulate for belief revision demand-
ing that independent parts should be revised independently
(Parikh 1999). This postulate was characterised in the
framework of total preorders in (Peppas et al. 2015). In
(Aravanis, Peppas, and Williams 2017), Parikh’s postulate
was characterised in the context of epistemic entrenchment.
The concept of syntax splitting was transferred to epistemic
states with total preorders and ranking functions along with
corresponding postulates for iterated belief revisions (Kern-
Isberner and Brewka 2017).

In the last years, belief contraction gained more atten-
tion as one of the central belief change operations, e.g.
(Nayak et al. 2006; Ramachandran, Nayak, and Orgun 2012;
Caridroit, Konieczny, and Marquis 2017; Konieczny and
Pino Pérez 2017; Sauerwald, Kern-Isberner, and Beierle
2020). But as far as we are aware, postulates for contrac-
tions in the presence of a syntax splitting are missing.

In this paper, we develop syntax splitting postulates for
contractions. These postulates are based on the work on
syntax splitting for revision and deal with contractions that
respect syntax splittings in the agent’s beliefs. We consider
contractions on ranking functions, on total preorders, and on
belief sets, which are all well-known and established rep-
resentations of epistemic states.We study and establish the
precise connection among the new contraction postulates.
Among other things, our analysis reveals a subtle but im-
portant difference in the concepts of belief change used in
(Parikh 1999) and (Kern-Isberner and Brewka 2017). To
show the applicability of the new postulates, we evaluate dif-
ferent types of contractions from the literature, namely mod-
erate contraction, natural contraction, lexicographic con-
traction, (Ramachandran, Nayak, and Orgun 2012) and c-
contractions (Kern-Isberner et al. 2017) with respect to the
newly developed contraction postulates. In summary, the
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main contributions of this paper are:

• Propose new syntax splitting postulates for contractions
on ranking functions, epistemic states with total pre-
orders, and belief sets.

• Establish the precise relationships among these postu-
lates.

• Analyse natural contraction, moderate contraction and
lexicographic contraction on total preorders with respect
to syntax splitting.

• Analyse c-contractions on ranking functions with respect
to syntax splitting.

The rest of the paper is structured as follows. In Sec. 2,
we outline previous work on belief representation and belief
change as far as needed here. In Sec. 3, we recall the def-
inition of syntax splitting and corresponding revision pos-
tulates for different beliefs representation frameworks. In
Sec. 4, we develop new syntax splitting postulates for con-
tractions of ranking functions, epistemic states with TPOs,
and belief sets. The new postulates are applied to some con-
traction operators from literature in Section 5. In Section 6,
we conclude and point out future work.

2 Background: Belief Representation and
Belief Change

Propositional Logic Let Σ be a (propositional) finite sig-
nature. The set of all propositional formulae over Σ is de-
noted by Form(Σ). We will use Ā as shorthand for ¬A and
AB as shorthand for A ∧ B with A,B ∈ Form(Σ). The
set of all interpretations, also called worlds, of Σ will be de-
noted as Int(Σ) or Ω. An interpretation ω ∈ Int(Σ) is a
model for A ∈ Form(Σ), denoted as ω |= A, if A holds in
ω. The set of models for a formula is ModΣ(A) = {ω ∈
Int(Σ) | ω |= A}. A formula with at least one model
is called consistent, otherwise inconsistent. For A,B ∈
Form(Σ) we say A entails B if ModΣ(A) ⊆ ModΣ(B).
The concepts of models, consistency and entailment are
analogously used for sets of formulae. ForM ⊆ Form(Σ),
the deductive closure ofM is CnΣ(M) = {A ∈ Form(Σ) |
M |= A}. If M = CnΣ(M) then M is called deduc-
tively closed. Note that the outcome of the Cn operator de-
pends on the logical language used. As we only use propo-
sitional logic in this paper, the outcome of the Cn operator
depends solely on the considered signature here. The de-
ductive closure of any set of formulae is deductively closed
and M ⊆ CnΣ(M). The theory of a set I ⊆ Int(Σ) is
Th(I) = {A ∈ Form(Σ) | ω |= A for all ω ∈ I}. Ev-
ery theory is deductively closed, ModΣ(Th(I)) = I for
all I ⊆ Int(Σ), and Th(ModΣ(M)) = CnΣ(M) for all
M⊆ Form(Σ).

Belief Revision We assume that an agent has an epistemic
state or belief state Ψ that is based on some propositional
signature Σ and contains all information that is relevant for
the reasoning of the agent. Furthermore, the agent has an
inference relation |≈ connecting belief states over Σ and for-
mulae in Form(Σ). The relation Ψ |≈ A holds iff the agent
with belief state Ψ believes that the formula A is true. We

consider the belief state in a very abstract sense here, but
more concrete concepts for belief states are introduced later
in this paper.

A belief change is the change of an agent’s belief state
from Ψ to Ψ◦ given a finite consistent set A of formulae as
input. For the belief changes considered in this paper, Ψ and
Ψ◦ are based on the same signature. Belief changes can be
categorized by their outcome: We call a change of Ψ with
A = {A1, . . . , An} to Ψ◦ a revision if Ψ◦ |≈ Ai for every
Ai ∈ A, and a contraction if Ψ◦ 6|≈ Ai for every Ai ∈ A. If
A contains exactly one element, we call the change a single
change and may write A1 instead of A = {A1}.

Belief changes can be realized by a belief change oper-
ator, i.e. a function ◦, that maps an agent’s belief state Ψ
before the change and a set A of formulae to the belief state
Ψ◦ = Ψ ◦ A after the change of Ψ with A. In this pa-
per, if Ψ is based on the signature Σ, then we allow only
A ⊆ Form(Σ) and require that Ψ◦ is also based on Σ.
For the case of belief sets this means that for a subsignature
Σ1 ⊆ Σ, a belief set K ⊆ Form(Σ1), and a set of formulae
A ⊆ Form(Σ1) it holds that K ◦ A ⊆ Form(Σ1), i.e. a
belief change may not introduce new variables to the belief
set. Change operators that are only defined for changes with
one formula (i.e. single changes) are called single belief
change operators. While finding good revision and contrac-
tion operators is a complex task, we will not make further
assumptions about the considered belief changes here.

In the following, we will specify three approaches to be-
lief representation that will be used in this paper.

Belief Sets One way to analyse the belief state of an agent
is to look at the set of propositions the agent considers to be
true (Hansson 1999). We call this set of formulae the belief
set K ⊆ Form(Σ) of an agent. We assume that an agent
believes all implications of her beliefs, i.e., K is deductively
closed. If an agent’s epistemic state is modelled by a belief
set K, then K |≈ A iff A ∈ K by definition.

A belief set Bel(Ψ) can be assigned to an epistemic
state Ψ by the following: A ∈ Bel(Ψ) iff Ψ |≈ A for
A ∈ Form(Σ).

Total Preorders and Iterated Revision In (Darwiche and
Pearl 1997) another framework for belief revision is intro-
duced that was developed to deal with iterated belief revi-
sions. This framework takes into account how (un-)likely
certain scenarios are. The belief states are called epistemic
states. Every epistemic state Ψ is assigned a total preorder
(TPO) 4Ψ on Ω. If ω1 4Ψ ω2, then the agent with state Ψ
considers ω1 to be as least as plausible as ω2 for ω1, ω2 ∈ Ω.
The minimal worlds are considered most plausible. The set
of minima of a set S with respect to an order ≤ on S is
min(S,≤) = {a ∈ S | a ≤ b for all b ∈ S}. The belief set
associated with Ψ is therefore Bel(Ψ) = Th(min(Ω,4Ψ)).
The total preorder is lifted to formulae: A 4Ψ B iff for an
ω1 ∈ min(ModΣ(A),4Ψ) and ω2 ∈ min(ModΣ(B),4Ψ)
it holds that ω1 4Ψ ω2.

Ranking Functions Another way to model epistemic
states is the use of ranking functions. A ranking function is
a function κ : Ω → N0 with κ−1(0) 6= ∅ (Spohn 1988).
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The rank of ω ∈ Ω is κ(ω). Ranking functions are in-
troduced in a more general form in (Spohn 1988) by map-
ping to ordinal numbers, but our definition is sufficient for
the purpose of this paper. The lower the rank of a world,
the more plausible it is. The most plausible worlds are
those with rank 0 and the belief set of a ranking function
is Bel(Ψ) = Th(min(Ω,4κ)) = Th(κ−1(0)). The rank
of a formula A is κ(A) = minω∈Mod(A) κ(ω). Every rank-
ing function induces a purely qualitative epistemic state rep-
resented by a total preorder 4κ defined by ω1 4κ ω2 iff
κ(ω1) ≤ κ(ω2).

3 Syntax Splitting and Revisions
In (Parikh 1999) it was noticed that the AGM postulates do
not take into account that a belief set might be based on com-
pletely independent propositions. For example, the revision
operator trivial update defined as

K ∗TU A =

{
K if A ∈ K
CnΣ(A) otherwise

for a belief set K over Σ and A ∈ Form(Σ) fulfils all
AGM revision postulates but yields unintuitive results like
CnΣ(a, b) ∗TU ā = CnΣ(ā). Information in the knowledge
base that is not affected by the new information is unneces-
sarily removed by the revision.

Parikh defined the term syntax splitting to describe be-
lief sets with independent information and formulated a pos-
tulate that describes the revision of belief sets with syn-
tax splitting (Parikh 1999). The concept of syntax split-
ting and Parikh’s postulate were later transferred to epis-
temic states with total preorders and to ranking functions
in (Kern-Isberner and Brewka 2017). We will now recall
the definition of syntax splitting and corresponding postu-
lates for each of the three frameworks: belief sets, TPOs,
and ranking functions.

3.1 Syntax Splitting on Belief Sets
A syntax splitting for a belief set is a partitioning of the
knowledge base such that the independent parts of informa-
tion can be each expressed using only one partition of the
syntax splitting. In the following, the symbol ∪̇ indicates a
union of disjunctive sets. It is used in this paper to highlight
partitions.

Definition 1 (syntax splitting for belief sets (Parikh 1999)).
Let Σ be a signature and K a belief set over Σ. For
A ∈ Form(Σ) the set Σ(A) ⊆ Σ denotes the smallest set
of variables that is necessary to represent a formula that is
equivalent to A.

A partitioning Σ = Σ1 ∪̇ · · · ∪̇Σn is a syntax splitting for
K, if there are formulae A1, . . . , An ∈ Form(Σ) with K =
CnΣ({A1, . . . , An}) and Σ(Ai) ⊆ Σi for i = 1, . . . , n.

With this definition Parikh proposed a postulate for revi-
sion operators. It is intended as addition to other postulates.

Postulate (P) (following (Parikh 1999)). Let Σ be a sig-
nature and ∗ a revision operator on Form(Σ). For every
partitioning Σ = Σ1 ∪̇ Σ2 there is a revision operator �

on Form(Σ1), such that for every A,C ∈ Form(Σ1), B ∈
Form(Σ2),K = CnΣ(A,B) it holds that:

K ∗ C = CnΣ(CnΣ1(A) � C ∪ {B})

It is sufficient to consider syntax splittings with two par-
titions in this postulate: If a belief set has a syntax splitting
with more than two partitions, all partitions that do not share
variables with the new formula C can be merged into a sin-
gle partition of a syntax splitting with only two partitions.

Note that the formulation we present was altered slightly
with respect to the version “strong P” given in (Peppas et al.
2015) to avoid misunderstandings. In (Peppas et al. 2015)
it was claimed that there are two different ways to read the
original Postulate (P): “weak (P)” and “strong (P)”.

3.2 Syntax Splitting on Preorders of Worlds
Considering syntax splitting only on the belief sets of belief
states can lead to problems.
Example 2. Let Σ = {a, b} with a 6= b. An agent strongly
beliefs a → b. Further she believes a. Let her epis-
temic state Ψ be associated with the TPO 4Ψ with ab ≺Ψ

āb, āb̄ ≺Ψ ab̄. Her belief set is therefore K = CnΣ(a, a →
b) = CnΣ(a, b). Now the agent learns ā. The revision with
Bel(Ψ ∗ ā) = CnΣ(āb ∨ āb̄) that is implied by 4Ψ violates
(P).

Since belief sets cannot capture different degrees of be-
lief, these are not taken into account in Parikh’s syntax split-
ting. Kern-Isberner and Brewka developed a definition for
syntax splitting on epistemic states with total preorders on
worlds (Kern-Isberner and Brewka 2017). A concept neces-
sary for their approach is that of the marginalisation of an
epistemic state. A marginalisation reduces the signature of
an epistemic state to a given subsignature. In the following
definition, the worlds ω1, ω2 ∈ Int(Σ1) are seen as formulae
over Σ in the inequation ω1 4Ψ ω2.
Definition 2 (marginalisation of TPOs (Kern-Isberner and
Brewka 2017)). Let Σ be a signature and Ψ an epistemic
state with TPO 4Ψ on Ω = Int(Σ). Let Θ ⊆ Σ. The
marginalisation of 4Ψ to Θ is the unique TPO 4Ψ|Θ on
ΩΘ = Int(Θ) defined by ω1 4Ψ|Θ ω2 iff ω1 4Ψ ω2 for
worlds ω1, ω2 ∈ ΩΘ.

Definition 3 (syntax splitting for TPOs (Kern-Isberner and
Brewka 2017)). Let Σ be a signature and Ψ an epistemic
state with TPO 4Ψ on Ω = Int(Σ). Let Σ = Σ1 ∪̇ · · · ∪̇
Σn be a partitioning, ωj be the variable assignment of the
variables in Σj as in ω, and ω 6=i :=

∧
j=1,...,n
i6=j

ωj for ω ∈ Ω

and i = 1, . . . , n. The partitioning Σ1 ∪̇ · · · ∪̇Σn is a syntax
splitting for Ψ if, for i = 1, . . . , n,

ω 6=i1 = ω 6=i2 implies
(
ω1 4Ψ ω2 iff ωi1 4Ψ|Σi

ωi2
)
.

This basically states that the order of two worlds that dif-
fer only in one partition of a syntax splitting does not depend
on the actual variable assignment outside this partition.

Based on postulate (R1) and (R2) in (Peppas et al. 2015)
Kern-Isberner and Brewka developed the following syntax
splitting postulate for TPOs.
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Postulate (MR) (Marginalised Revision (Kern-Isberner and
Brewka 2017)). Let ∗ be a revision operator on epistemic
states with TPO. For every state Ψ with syntax splitting
Σ = Σ1 ∪̇ · · · ∪̇ Σn and C = {C1, . . . , Cn} such that
Ci ∈ Form(Σi) for i = 1, . . . , n it holds that:

4(Ψ∗C)|Σi
= 4(Ψ|Σi

)∗Ci
for i = 1, . . . , n

(MR) describes that revision and marginalisation can be
swapped if they affect the same partition of the syntax split-
ting. One implication of (P) is that the syntax splitting re-
mains after a revision with a formula that affects only one
partition. As this is not captured by (MR), another postulate
was added.

Postulate (Pit) (iterated P (Kern-Isberner and Brewka
2017)). Let ∗ be a revision operator on epistemic states with
TPO. For every state Ψ with syntax splitting Σ = Σ1 ∪̇ · · · ∪̇
Σn and C = {C1, . . . , Cn} such that Ci ∈ Form(Σi) for
i = 1, . . . , n, the partition Σ1 ∪̇ · · · ∪̇Σn is a syntax splitting
for Ψ ∗ C.

Note that (MR) does not imply (Pit) or vice versa. A
counterexample for this can be found in (Kern-Isberner and
Brewka 2017).

3.3 Syntax Splitting on Ranking Functions
As a ranking function induces a total preorder on the worlds,
the postulates (MR) and (Pit) could be applied to revisions
on ranking functions. But the additional expressiveness of
ranking functions allows to define a stricter notion of syn-
tax splitting and syntax splitting postulates more specific to
ranking functions.

Definition 4 (syntax splitting for ranking functions (Kern-Is-
berner and Brewka 2017)). Let Σ be a signature and κ a
ranking function over Ω = Int(Σ). Let ωj be the variable
assignment of the variables in Σj as in ω.

A partitioning Σ = Σ1∪̇· · ·∪̇Σn is a syntax splitting for κ
if there are ranking functions κi : Σi 7→ N0 for i = 1, . . . , n
such that κ(ω) = κ1(ω1) + · · · + κn(ωn). This is denoted
as κ = κ1 ⊕ · · · ⊕ κn.

Marginalisation can be defined for ranking functions as
well. Again, the signature is reduced to a given subsignature
Θ. The rank of a world ωΘ over Θ is determined by the rank
of the minimal world that matches ωΘ on Θ.

Definition 5 (marginalisation on ranking functions (Kern-Is-
berner and Brewka 2017)). Let Σ be a signature and κ be
a ranking function over Ω = Int(Σ). Let Θ ⊆ Σ. The
marginalisation of κ to Θ is the function κ|Θ : ΩΘ 7→ N0

with κ|Θ(ω) = κ(ω) for ω ∈ ΩΘ.

Note that ω is seen as a formula in the right hand side
of the last equation in Definition 5 and that the marginalisa-
tion of a ranking function to a subsignature Θ is a ranking
function over Int(Θ). Marginalization of semantical struc-
tures has also been studied in (Beierle and Kern-Isberner
2012) where many different semantics for conditional log-
ics, including total preorders, ranking functions, probablity
distributions, possibility measures, conditional objects, and
variants thereof, are formalized as institutions (Goguen and

Burstall 1992). The marginalization of total preorders and
of ranking functions in Definitions 2 and 5, respectively, are
special cases of the general forgetful functor Mod(σ) from
Σ-models to Θ-models given in (Beierle and Kern-Isberner
2012) where Θ ⊆ Σ and σ is the inclusion from Θ to Σ.

The marginalisation of ranking functions is compatible
with the marginalisation of total preorders in the following
sense:
Proposition 1. Let Σ be a signature, κ be a ranking function
over Ω = Int(Σ), and Ψ be an epistemic state such that
4Ψ =4κ. Let Θ ⊆ Σ. Then 4Ψ|Θ = 4κ|Θ .

Also for a ranking function κ = κ1 ⊕ · · · ⊕ κn with
syntax spitting Σ1 ∪̇ · · · ∪̇ Σn it holds that κ|Σi

= κi for
i = 1, . . . , n. Using these definitions the postulates (MR)
and (Pit) can be transferred to ranking functions.
Postulate (MRocf ) (Marginalised Revision for OCFs
(Kern-Isberner and Brewka 2017)). Let ∗ be a revision op-
erator on ranking functions. For every ranking function
κ = κ1 ⊕ · · · ⊕ κn with syntax splitting Σ = Σ1 ∪̇ · · · ∪̇Σn
and C = {C1, . . . , Cn} such that Ci ∈ Form(Σi) for
i = 1, . . . , n it holds that:

(κ ∗ C)|Σi = κ|Σi ∗ Ci = κi ∗ Ci for i = 1, . . . , n.

Postulate (Pocf ) (P for OCFs (Kern-Isberner and Brewka
2017)). Let ∗ be a revision operator on ranking functions.
For every ranking function κ = κ1 ⊕ · · · ⊕ κn with syntax
splitting Σ = Σ1 ∪̇ · · · ∪̇ Σn and C = {C1, . . . , Cn} such
that Ci ∈ Form(Σi) for i = 1, . . . , n it holds that:

κ ∗ C = (κ1 ∗ C1)⊕ · · · ⊕ (κn ∗ Cn)

(Pocf ) implies (MRocf ) (Kern-Isberner and Brewka
2017). Another implication of (Pocf ) is the following postu-
late (Pit−ocf ) that is inspired by (Pit).

Postulate (Pit−ocf ) (iterated P for OCFs). Let ∗ be a revi-
sion operator on ranking functions. For every ranking func-
tion κ = κ1⊕· · ·⊕κn with syntax splitting Σ = Σ1∪̇· · ·∪̇Σn
and C = {C1, . . . , Cn} such that Ci ∈ Form(Σi) for
i = 1, . . . , n the partitioning Σ1 ∪̇ · · · ∪̇ Σn is a syntax
splitting for κ ∗ C.

It can be shown that (MRocf ) and (Pit−ocf ) together are
equivalent to (Pocf ).

4 Syntax Splitting Postulates for
Contractions

In this section, we will look at the contraction of beliefs
with syntax splitting. Based on the syntax splitting postu-
lates for revision presented in Section 3, we will develop
syntax splitting postulates for contractions on ranking func-
tions, on epistemic states with total preorders, and on belief
sets. To do so, we will first transfer the postulates for the
revision of ranking functions to the contraction of ranking
functions. Then we will transfer these postulates to con-
tractions on epistemic states with total preorders. Finally,
we will develop postulates for the contraction of belief sets.
Figure 1 shows an overview of the syntax splitting postulates
for contractions developed in this section.
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(P−)

(PK− )

(K1) (K2) (K3)
∧

(MKs) (Pit−s)

(MK) (Pit−)

(MKocf ) (Pit−ocf− )

∧

(Pocf− )

κ

Ψ

K

Figure 1: Overview of the developed syntax splitting postulates for
contraction. The solid arrows indicate that one postulate implies
another postulate (possibly with some assumptions). The dashed
lines indicate that the conclusion of one postulate implies the con-
clusion of another postulate.

4.1 Contraction of Ranking Functions
The postulate (Pocf ) can be transferred to a similar postulate
for contractions.

Postulate (Pocf− ). Let − be a contraction operator on rank-
ing functions. For every ranking function κ = κ1 ⊕ · · · ⊕
κn with syntax splitting Σ = Σ1 ∪̇ · · · ∪̇ Σn and C =
{C1, . . . , Cn} such that Ci ∈ Form(Σi) for i = 1, . . . , n
it holds that:

κ− C = (κ1 − C1)⊕ · · · ⊕ (κn − Cn)

The postulates (Pocf ) and (Pocf− ) are so similar that they
could be generalized to a single postulate for belief changes
on ranking functions. An implication of the postulate (Pocf− )
is that the syntax splitting remains unchanged after the con-
traction. Another implication is that the marginalization of
κ − C on a partition Σi is the same as κi − Ci. Both state-
ments can be formulated as autonomous postulates.

Postulate (Pit−ocf− ). Let − be a contraction operator on
ranking functions. For every ranking function κ = κ1 ⊕
· · · ⊕ κn with syntax splitting Σ = Σ1 ∪̇ · · · ∪̇ Σn and C =
{C1, . . . , Cn} such that Ci ∈ Form(Σi) for i = 1, . . . , n
the partition Σ1 ∪̇ · · · ∪̇ Σn is a syntax splitting for κ− C.

Postulate (MKocf ). Let − be a contraction operator on
ranking functions. For every ranking function κ = κ1 ⊕
· · · ⊕ κn with syntax splitting Σ = Σ1 ∪̇ · · · ∪̇ Σn and C =
{C1, . . . , Cn} such that Ci ∈ Form(Σi) for i = 1, . . . , n it
holds that:

(κ− C)|Σi
= κi − Ci = κ|Σi

− Ci for i = 1, . . . , n

The following proposition shows that (Pit−ocf− ) and
(MKocf ) together are equivalent to (Pocf− ).

Proposition 2. A contraction operator − fulfils (Pocf− ) iff it
fulfils (MKocf ) and (Pit−ocf− ).

Proof. The ⇒ direction is obvious. For the ⇐ direc-
tion let − be a contraction operator fulfilling (MKocf ) and
(Pit−ocf− ). Let κ = κ1⊕· · ·⊕κn be a ranking function with
syntax splitting Σ1 ∪̇ · · · ∪̇ Σn and C = {C1, . . . , Cn} such
that Ci ∈ Form(Σi) for i = 1, . . . , n. Using (Pit−ocf− ) it
follows that Σ1 ∪̇ · · · ∪̇Σn is a syntax splitting for κ−C, i.e.,

κ− C = κ−1 ⊕ · · · ⊕ κ−n

for some κ−1 , . . . , κ
−
n . From (MKocf ) it follows that κ−i =

(κ−C)|Σi
= κ|Σi

−Ci = κi −Ci for i = 1, . . . , n. There-
fore, − fulfils (Pocf− ).

4.2 Contraction of Epistemic States with TPOs
Consider now epistemic states with total preorders over
worlds. The postulates (Pit−ocf− ) and (MKocf ) can be trans-
ferred from ranking functions to this case.

Postulate (Pit−). Let − be a contraction strategy on epis-
temic states with total preorders. For every state Ψ with syn-
tax splitting Σ = Σ1 ∪̇ · · · ∪̇Σn and C = {C1, . . . , Cn} with
Ci ∈ Form(Σi) for i = 1, . . . , n the partition Σ1 ∪̇ · · · ∪̇Σn
is a syntax splitting for Ψ− C.

Postulate (MK). Let − be a contraction operator on epis-
temic states with total preorders. For every state Ψ with
syntax splitting Σ = Σ1 ∪̇ · · · ∪̇ Σn and C = {C1, . . . , Cn}
with Ci ∈ Form(Σi) for i = 1, . . . , n it holds that:

4(Ψ−C)|Σi
= 4(Ψ|Σi

)−Ci
for i = 1, . . . , n

Neither (MK) implies (Pit−) nor vice versa.
As a ranking function κ can be seen as an epistemic state

with total preorder 4κ, the postulates (MK) and (Pit−) can
be applied to ranking functions as well. But it should be
noted that (MKocf ) does not imply (MK) even though the
conclusion of (MKocf ) implies (MK). A ranking function κ
contains more information than the derived TPO 4κ, and a
syntax splitting for 4κ is not necessarily a syntax splitting
for κ. Therefore, there are cases where (MK) is applicable,
but (MKocf ) is not. The same holds for (Pit−ocf− ) and (Pit−).

The postulates (Pit−) and (MK) describe multiple contrac-
tions, but many contraction operators on total preorders are
single contractions, i.e., they contract one formula at a time.
For a contraction that does not distinguish between a for-
mula C and the set {C,⊥} and satisfies trivial vacuity, i.e.
Ψ−⊥ = Ψ, the following two postulates for single contrac-
tions follow from (Pit−) and (MK).

Postulate (Pit−s). Let − be a contraction operator on epis-
temic states with total preorders. For every state Ψ with
syntax splitting Σ = Σ1 ∪̇Σ2 and C ∈ Form(Σ1) the parti-
tioning Σ1 ∪̇ Σ2 is a syntax splitting for Ψ− C.
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Postulate (MKs). Let − be a contraction operator on epis-
temic states with total preorders. For every state Ψ with
syntax splitting Σ = Σ1 ∪̇ Σ2 and C ∈ Form(Σ1) we have:

4(Ψ−C)|Σ1
= 4(Ψ|Σ1 )−C (MKs1)

4(Ψ−C)|Σ2
= 4(Ψ|Σ2

) (MKs2)

The first part of the postulate (MKs) restricts the change
of the partition that is affected by the contraction. The sec-
ond part restricts the change on the part that is not affected
by the contraction.

4.3 Syntax Splitting on Belief Sets
Now we want to transfer the syntax splitting postulates to
contractions on belief sets. As most contraction operators do
not support multiple contractions, we will start with (MKs)
and (Pit−s). Let us look at the conclusions of this postulates.

Proposition 3. Let Ψ be an epistemic state over signature
Σ, C ∈ Form(Σ1) such that Σ1 ⊆ Σ and − a contraction
operator on epistemic states with TPOs.

• If Σ1 ∪̇ Σ2 with Σ2 = Σ \ Σ1 is a syntax splitting for
Ψ−C, then Σ1 ∪̇Σ2 is a syntax splitting for Bel(Ψ−C)
as well (Kern-Isberner and Brewka 2017).

• If 4(Ψ−C)|Σ1
= 4(Ψ|Σ1

)−C , then Bel(Ψ − C) ∩
Form(Σ1) = Bel((Ψ|Σ1

)− C).
• If 4(Ψ−C)|Σ2

= 4(Ψ|Σ2 ), then Bel(Ψ−C)∩Form(Σ2) =

Bel(Ψ) ∩ Form(Σ2).

Proof. The first statement is a special case of Proposition 3
in (Kern-Isberner and Brewka 2017).

Let Σ be a signature, Ψ,Φ epistemic states over Σ and
Σ1 ⊆ Σ2. To prove the other two statements, we show
that 4Ψ|Σ1

= 4Φ|Σ1
implies that Bel(Ψ) ∩ Form(Σ1) =

Bel(Φ) ∩ Form(Σ1). Let Ω = Int(Σ) and ΩΣ1
= Int(Σ1).

Let ω1 be the variable assignment of the variables in Σ1 as
in ω for a world ω ∈ Ω.

Bel(Ψ) ∩ Form(Σ1)

= (Th(min(Ω,4Ψ))) ∩ Form(Σ1)

= {A ∈ Form(Σ1) | ω |= A for all ω ∈ min(Ω,4Ψ)}
†
= {A ∈ Form(Σ1) | ω1 |= A for all ω ∈ min(Ω,4Ψ)}
‡
= {A ∈ Form(Σ1) | ω1 |= A for all ω1 ∈ min(Ω,4Ψ|Σ1

)}
= {A ∈ Form(Σ1) | ω1 |= A for all ω1 ∈ min(Ω,4Φ|Σ1

)}
= Bel(Φ) ∩ Form(Σ1)

Equation † holds, because A uses only variables from Σ1.
The assignment of variables from Σ \ Σ1 has no influence
on the evaluation ofA. Equation ‡ holds, because {ω1 | ω ∈
min(Ω,4Ψ)} = {ω1 | ω1 ∈ min(Ω,4Ψ|Σ1

)}. The world
ω1 ∈ Int(Σ1) is the restriction of ω ∈ Int(Σ) to Σ1, and ω1

is a world directly selected from Int(Σ).

Based on this we can formulate the following syntax split-
ting postulate for contractions on belief sets.

Postulate (K). Let − be a contraction operator on belief
sets. For every belief set K with syntax splitting Σ = Σ1 ∪̇
Σ2, i.e. K = CnΣ(A,B) such that A ∈ Form(Σ1), B ∈
Form(Σ2), and C ∈ Form(Σ1) it holds that:
(K1) (K − C) ∩ Form(Σ2) = K ∩ Form(Σ2)

(K2) (K − C) ∩ Form(Σ1) = (K ∩ Form(Σ1))− C
(K3) Σ1 ∪̇ Σ2 is a syntax splitting of K − C.

The postulate (K) can be formulated as the following,
more compact postulate.

Postulate (PK− ). Let − be a contraction operator on belief
sets. For every belief set K with syntax splitting Σ = Σ1 ∪̇
Σ2, i.e. K = CnΣ(A,B) such that A ∈ Form(Σ1), B ∈
Form(Σ2), and C ∈ Form(Σ1) it holds that:

K − C = CnΣ((CnΣ1(A)− C) ∪ {B})

The following proposition shows that (K) and (PK− ) are
indeed equivalent.
Proposition 4. Let − be a contraction operator. Then −
fulfils (PK− ) iff − fulfils (K).

Proof. Let− be a contraction operator,K = CnΣ(A,B) be
a belief set with syntax splitting Σ = Σ1 ∪̇ Σ2, and A,C ∈
Form(Σ1), B ∈ Form(Σ2).

⇒: Let − fulfil (PK− ). This implies:

(K − C) ∩ Form(Σ2)

(PK
− )
= CnΣ(CnΣ1(A)− C︸ ︷︷ ︸

⊆Form(Σ1)

∪{B}) ∩ Form(Σ2)

= CnΣ(B) = CnΣ(A,B) ∩ Form(Σ2)

= K ∩ Form(Σ2)

Therefore − fulfils (K1).
Furthermore, we have:

(K − C) ∩ Form(Σ1)

(PK
− )
= CnΣ(CnΣ1(A)− C ∪ {B}) ∩ Form(Σ1)

= CnΣ(CnΣ1
(A)− C) ∩ Form(Σ1)

= CnΣ((K ∩ Form(Σ1))− C) ∩ Form(Σ1)

(K∩Form(Σ1))−C
⊆Form(Σ1)

= (K ∩ Form(Σ1))− C

Therefore − fulfils (K2).
Because Σ1 ∪̇ Σ2 is a syntax splitting for K − C =

(CnΣ(CnΣ1
(A) − C ∪ {B})) the contraction fulfils (K3).

⇐ (inspired by the proof of Theorem 1 in (Peppas et al.
2015)): Let − fulfil (K). From (K2) it follows

(K − C) ∩ Form(Σ1)

= ((K ∩ Form(Σ1))− C) ∩ Form(Σ1)

= CnΣ1
(A)− C

and from (K1) it follows:

(K − C) ∩ Form(Σ2) = K ∩ Form(Σ2)
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= CnΣ(A,B) ∩ Form(Σ2) = CnΣ(B)

Because Σ = Σ1 ∪̇ Σ2 is a syntax splitting for K − C (see
(K3)) we have

K − C
= CnΣ((K − C ∩ Form(Σ1)) ∪ (K − C ∩ Form(Σ2)))

= CnΣ((CnΣ1(A)− C) ∪ (CnΣ(B)))

= CnΣ((CnΣ1
(A)− C) ∪ {B})

Therefore − fulfils (PK− ).

Another way to get a syntax splitting postulate for con-
tractions of belief sets is to directly transfer (P) to contrac-
tions. Doing this, we obtain the following postulate.

Postulate (P−). Let Σ be a signature and− be a contraction
operator on Form(Σ). For every partitioning Σ = Σ1 ∪̇ Σ2

there is a contraction operator÷ on Form(Σ1) such that for
all A,C ∈ Form(Σ1), B ∈ Form(Σ2),K = CnΣ(A,B) it
holds that:

K − C = CnΣ(CnΣ1
(A)÷ C ∪ {B})

While (PK− ) and (P−) look similar, they are not identical.
This is because (PK− ) is a postulate for contraction strate-
gies, while (P−) is a postulate for contraction operators with
a fixed signature (cf. Section 3.2). In (P−) a new contrac-
tion operator ÷ for subsignatures is introduced. In (PK− ) the
same contraction operator is used for belief sets over Σ and
over subsignatures Σ1 ⊆ Σ. The postulates are nevertheless
connected: If a contraction operator fulfils (PK− ), then this
operator fulfils (P−).

5 Application to Known Contractions
We now apply the new syntax splitting postulates to contrac-
tions proposed in the literature. We examine the moderate,
the natural, and the lexicographic contraction (Ramachan-
dran, Nayak, and Orgun 2012) on epistemic states with total
preorders with the postulates (MKs) and (Pits). Afterwards,
we examine c-changes on ranking functions (Kern-Isberner
et al. 2017) with (MKocf ) and (Pit−ocf− ).

5.1 Moderate Contraction
After a moderate contraction, all models of the contracted
formula that are not maximally plausible, are ordered after
the models of this formula.

Definition 6 (moderate contraction (following (Ramachan-
dran, Nayak, and Orgun 2012))). Let Ψ be an epistemic
state with TPO 4Ψ over Σ. A moderate contraction with
C ∈ Form(Σ) yields the state Ψ −M C with ordering
4Ψ−MC such that:

• if ω1, ω2 |= C or ω1, ω2 |= C, then ω1 4Ψ−MC ω2 iff
ω1 4Ψ ω2

• if ω1 |= C and ω2 |= C,ω2 /∈ min(Mod(C),4Ψ), then
ω1 4Ψ−MC ω2

• if ω1 ∈ min(Mod(C),4Ψ) ∪ min(Mod(C),4Ψ), then
ω1 4Ψ−MC ω2

Ψ moderate
contraction

natural
contraction

lexicographic
contraction

Figure 2: Graphic representation of different contraction operators
on epistemic states with total preorders. An epistemic state Ψ is
contracted by a formula α. The models of α are represented by
this area, the counter models by this area. The lower an area
is, the lower and thus the more plausible are the represented models
in the epistemic state’s TPO.

First a general observation: If a contraction − fulfils
the postulates (CK1) and (CK2) from (Konieczny and Pino
Pérez 2017, Theorem 4, Properties 4 and 5) which are
(CK1) ω1 4Ψ ω2 iff ω1 4Ψ−C ω2 for ω1, ω2 ∈ Mod(C)

(CK2) ω1 4Ψ ω2 iff ω1 4Ψ−C ω2 for ω1, ω2 ∈ Mod(C).
for an epistemic state Ψ over a signature Σ and C ∈
Form(Σ), then − fulfils the (MKs2) part of (MKs). (CK1)
and (CK2) prohibit unnecessary changes to the TPO, and
(MKs2) prohibits changes to the part of the belief state not
affected by the contraction. Therefore, these postulates are
connected. However, (CK1) and (CK2) are not enough to
imply the whole (MKs). The moderate, the natural, and the
lexicographic contraction considered here fulfil (CK1) and
(CK2).
Proposition 5. A contraction operator on epistemic states
with TPOs that fulfils (CK1) and (CK2) fulfils (MKs2).

Proof. Let Ψ be an epistemic state with syntax splitting
Σ = Σ1 ∪̇ Σ2 and C ∈ Form(Σ1). First we show
4(Ψ−C)|Σ2

⊆ 4Ψ|Σ2
. To do so, consider any ω1, ω2 ∈ Σ2

such that ω1 4(Ψ−C)|Σ2
ω2. Let ωl1 be one of the smallest

worlds with respect to 4Ψ−C such that ωl1 and ω1 coincide
on Σ2. Let ωl2 be the world that coincides with ωl1 on Σ1

and with ω1 on Σ2. Then ωl1 4Ψ−C ω2. Because ωl1 and
ωl2 coincide on Σ1, either both or none of them fulfils C.
Therefore ωl1 4Ψ ωl2.

Let ωm1 be one of the smallest worlds with respect to 4Ψ

such that ωm1 and ω1 coincide on Σ2. Let ωm2 be the world
that coincides with ωm1 on Σ1 and with ω1 on Σ2. The syntax
splitting of Ψ and ωl1 4Ψ ωl2 imply ωm1 4Ψ ωm2 . Because
ωm1 was chosen minimal, ω1 4Ψ|Σ2

ω2.
Now we will show that 4Ψ|Σ2

⊆ 4(Ψ−C)|Σ2
. To do so,

consider ω1, ω2 ∈ Σ2 such that ω1 4Ψ|Σ2
ω2. Let ωl2 be one

of the smallest worlds with respect to 4Ψ−C that coincides
with ω2 on Σ2 and let ωl1 be the world that coincides with
ωl2 on Σ1 and with ω1 on Σ2. Because of the syntax splitting
of Ψ we have ωl1 4Ψ ωl2. Because either both or none of ωl1
and ωl2 fulfil C it holds that ωl1 4Ψ−C ωl2. Because ωl2 was
chosen as small as possible, ω1 4(Ψ−C)|Σ2

ω2.
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abc

ābc ab̄c abc̄

āb̄c ab̄c̄ ābc̄

āb̄c̄

(a) Ψ TPO before
contraction

abcābc

āb̄c ābc̄

āb̄c̄

ab̄c abc̄

ab̄c̄

(b) Ψ −M a after
moderate contraction

abcābc

ab̄c abc̄

āb̄c ab̄c̄ ābc̄

āb̄c̄

(c) Ψ −N a after
natural contraction

Figure 3: The syntax splitting {a}∪̇{b}∪̇{c} of Ψ is not preserved
by moderate contraction (3b) nor by natural contraction (3c).

Applying (MKs) and (Pit−s) yields:

Proposition 6. Moderate contraction fulfils (MKs) but not
(Pit−s).

Proof. To prove that moderate contraction fulfils (MKs),
consider a state Ψ with syntax splitting Σ1 ∪̇ Σ2 and C ∈
Form(Σ1). For showing 4(Ψ−C)|Σ1

⊆ 4(Ψ|Σ1 )−C , we con-
sider any ω1, ω2 ∈ Σ1 with ω1 4(Ψ−C)|Σ1

ω2 and show
ω1 4(Ψ|Σ1

)−C ω2 by distinguishing the following five cases:

Case 1 ω1 |= C,ω2 |= C

Case 2 ω1 |= C,ω2 |= C

Case 3 ω1 |= C,ω2 |= C

Case 4a ω1 |= C,ω2 |= C and ω1 ≈(Ψ−C)|Σ1
ω2

Case 4b ω1 |= C,ω2 |= C and ω1 ≺(Ψ−C)|Σ1
ω2

We now show 4(Ψ|Σ1 )−C ⊆ 4(Ψ−C)|Σ1
. To do so, consider

any ω1, ω2 ∈ Σ1 with ω1 4(Ψ−C)|Σ1
ω2 and we can show

ω1 4(Ψ|Σ1 )−C ω2 by a similar case discrimination.
The moderate contraction fulfils (MKs2) because of

Proposition 5.
The following counter example shows that moderate con-

traction does not fulfil (Pit−s). Let Σ = {a, b, c}. The par-
titioning {a} ∪̇ {b} ∪̇ {c} is a syntax splitting for the TPO
depicted in Figure 3a. Contracting this TPO with a using
moderate contraction yields the TPO depicted in Figure 3b.
The partitioning {a} ∪̇ {b} ∪̇ {c} is not a syntax splitting for
the latter.

5.2 Natural Contraction
Natural contraction is a contraction operator inspired by nat-
ural revision.

Definition 7 (natural contraction (following (Ramachan-
dran, Nayak, and Orgun 2012))). Let Ψ be an epistemic
state with TPO 4Ψ over Σ. A natural contraction with
C ∈ Form(Σ) yields the state Ψ −N C with the TPO
4Ψ−NC such that:

• If ω1 ∈ min(Mod(C),4Ψ) ∪ min(Mod(C),4Ψ), then
ω1 4Ψ−NC ω2

• If ω1, ω2 /∈ min(Mod(C),4Ψ) ∪ min(Mod(C),4Ψ),
then ω1 4Ψ−NC ω2 iff ω1 4Ψ ω2

The natural contraction tries to change the total preorder
as little as possible.

Proposition 7. Natural contraction fulfils (MKs) but not
(Pit−s).

Proof. To prove that natural contraction fulfils (MKs1), con-
sider a state Ψ with syntax splitting Σ1 ∪̇ Σ2 and C ∈
Form(Σ1). For showing 4(Ψ−C)|Σ1

⊆ 4(Ψ|Σ1
)−C , we con-

sider any ω1, ω2 ∈ Σ1 with ω1 4(Ψ−C)|Σ1
ω2 and show

ω1 4(Ψ|Σ1
)−C ω2 by distinguishing the following cases:

Case 1 ω1 is minimal with respect to 4(Ψ−C)|Σ1

Case 2 ω1 is not minimal with respect to 4(Ψ−C)|Σ1

Now we show 4(Ψ|Σ1
)−C ⊆ 4(Ψ−C)|Σ1

. To do so, we
consider any ω1, ω2 ∈ Σ1 with ω1 4(Ψ−C)|Σ1

ω2 and show
ω1 4(Ψ|Σ1 )−C ω2 by a similar case discrimination:

Case 1a ω1 is minimal with respect to 4(Ψ−C)|Σ1
and ω1 is

minimal with respect to 4Ψ|Σ1

Case 1b ω1 is minimal with respect to 4(Ψ−C)|Σ1
and ω1 is

minimal in ModΣ1
(C) with respect to 4Ψ|Σ1

Case 2 ω1 is not minimal with respect to 4(Ψ−C)|Σ1

Natural contraction fulfils (MKs2) due to Proposition 5.
The following counter example shows that natural contrac-
tion does not fulfil (Pit−s). Let Σ = {a, b, c}. The partition-
ing {a} ∪̇ {b} ∪̇ {c} is a syntax splitting for the TPO de-
picted in Figure 3a. A natural contraction of this TPO with
a yields the TPO depicted in Figure 3c. The partitioning
{a} ∪̇ {b} ∪̇ {c} is not a syntax splitting for the latter.

5.3 Lexicographic Contraction
Lexicographic contraction places models and counter mod-
els of the contracted formula “parallel” to each other.

Definition 8 (complete chain (following (Ramachandran,
Nayak, and Orgun 2012))). Let M be a set with a total
preorder 4. An ordered set K = {k1, . . . , kn} ⊆ M is
a complete chain in M with respect to 4 if either K = ∅
or k1 ∈ min(M,4) and K \ {k1} is a complete chain in
M \min(M,4). A complete chain K = {k1, . . . , kn} 6= ∅
ends in kn.

Definition 9 (lexicographic contraction (following (Ra-
machandran, Nayak, and Orgun 2012))). Let Ψ be an epis-
temic state with TPO 4Ψ over Σ. A lexicographic contrac-
tion with C ∈ Form(Σ) yields a state Ψ −L C with TPO
4Ψ−LC such that:

• If ω1, ω2 |= C or ω1, ω2 |= C, then ω1 4Ψ−LC ω2 iff
ω1 4Ψ ω2

• If ω1 |= X and ω2 |= X with X = C or X = C, then
ω1 4Ψ−LC ω2 if a complete chain in Mod(X) with re-
spect to 4Ψ that ends in ω1 is at least as short as a com-
plete chain in Mod(X) with respect to 4Ψ that ends in
ω2.

Proposition 8. The lexicographic contraction fulfils (MKs2)
but not (MKs1) or (Pit−).
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abc

ab̄c

abc̄

ābc

āb̄c

ab̄c̄

ābc̄

āb̄c̄

(a) Ψ

abc

abc̄

ābc

ab̄c̄

ab̄c

āb̄c

ābc̄

āb̄c̄

(b) Ψ−L b

bc b̄c

bc̄

b̄c̄

(c) (Ψ−L b)|Σ2

bc

b̄c

bc̄

b̄c̄

(d) Ψ|Σ2

bc b̄c

bc̄ b̄c̄

(e) Ψ|Σ2−Lb

Figure 4: The syntax splitting {a}∪̇{b, c} is lost in this contraction
(see Figure 4b). Furthermore 4(Ψ−b)|Σ2

6= 4Ψ|Σ2
−b.

Proof. The lexicographic contraction fulfils (MKs2) be-
cause of Proposition 5.

That the lexicographic contraction does not fulfil (MKs1)
and (Pit−) is demonstrated by the following example. Let
Σ = {a, b, c}. The partitioning Σ1 ∪̇ Σ2 = {a} ∪̇ {b, c} is
a syntax splitting for the TPO 4Ψ illustrated in Figure 4a.
Contracting b yields the TPO 4Ψ−b depicted in Figure 4b.
The partition {a} ∪̇ {b, c} is not a syntax splitting for 4Ψ−b.
Furthermore 4(Ψ−b)|Σ2

6= 4Ψ|Σ2−b.

5.4 C-Contraction
C-changes are a special kind of change operations on rank-
ing functions (Kern-Isberner et al. 2017; Beierle et al. 2019)
that are based on the principle of conditional preservation
(Kern-Isberner 2001; Kern-Isberner 2004). While c-changes
are defined to handle changes with conditionals, we only
consider changes with formulae here.
Definition 10 (c-change (Kern-Isberner et al. 2017)). Let
κ be a ranking function and C = {C1, . . . , Cn} be a
set of propositional formulae. A change from κ with
C to κ◦ is a c-change if there are rational numbers
γ+

1 , γ
−
1 , . . . , γ

+
n , γ

−
n , κ0 such that

κ◦(ω) = κ0 + κ(ω) +
n∑
i=1
ω|=Ci

γ+
i +

n∑
i=1
ω|=Ci

γ−i

and κ◦ is a ranking function.
In practise, the value κ0 is used to adjust the ranks such

that the minimal worlds have rank 0. If κ◦(Ci)−κ◦(Ci) > 0
for every i = 1, . . . , n, then the change is called a c-revision.
If κ◦(Ci) − κ◦(Ci) ≤ 0 for every i = 1, . . . , n, then the
change is called a c-contraction. A special case of the c-
contraction is the c-ignoration with κ◦(Ci) − κ◦(Ci) = 0
for every i = 1, . . . , n.

Proposition 9. C-contractions fulfil (Pit−ocf− ) in the
sense that every contraction operator that uses only c-
contractions, fulfils (Pit−ocf− ).

Proof. Let − be a contraction operator that uses only c-
changes. Let κ = κ1 ⊕ · · · ⊕ κn be a ranking function with

ab

ab̄

āb

āb̄

(a) κ

a

ā

(b) κ1

b

b̄

(c) κ2

ab̄ āb̄

ab āb

(d) κ−{a, b}

ab ab̄ āb āb̄

(e) (κ− a)⊕ (κ− b)

Figure 5: This contraction operator uses only c-contractions and
does not fulfil (MKocf ).

syntax splitting Σ1 ∪̇ · · · ∪̇ Σn and C = {C1, . . . , Cn} be a
set of propositional formulae such that Ci ⊆ Form(Ci) for
i = 1, . . . , n. Then κ− = κ− C has the form:

κ−(ω) = κ0 + κ(ω)+{
γ+

1 if ω |= C1

γ−1 if ω 6|= C1
+ · · ·+

{
γ+
n if ω |= Cn
γ−n if ω 6|= Cn

= κ−1 (ω1)⊕ · · · ⊕ κ−n (ωn)

where ω = ω1ω2 . . . ωn with ωi ∈ Int(Σi) for i = 1, . . . , n
can be any world. The κi0 are chosen such that

κ−i (ωi) = κi0 + κi(ωi) +

{
γ+
i if ω |= Ci
γ−i if ω 6|= Ci

is a ranking function for i = 1, . . . , n.

Arbitrary c-contractions do not fulfil (Pocf− ), as the choice
of the impacts does not necessarily respect syntax splittings.
Consider the following counter example:
Example 3. Let κ = κ1⊕κ2 be the ranking function shown
in Figure 5a with the syntax splitting Σ = {a} ∪̇ {b}. Con-
sider a contraction operator that uses the impact aγ− = −2
for the contraction κ1 − a, the impact bγ− = −1 for the
contraction κ2 − b , and the impacts γ−1 = −2, γ−2 = −2
for the contraction κ − {a, b}. The impacts γ+ are zero for
each contraction. This contraction operator does not ful-
fil (MKocf ) as (κ − {a, b})(ab) = 1 but ((κ − a) ⊕ (κ −
b))(ab) = 0.

For c-changes we can show a property similar to (Pocf− ).
Proposition 10. Let κ = κ1⊕· · ·⊕κn be a ranking function
with syntax splitting Σ1 ∪̇ · · · ∪̇Σn and C = {C1, . . . , Cn} a
set of formulae such that Ci ⊆ Form(Ci) for i = 1, . . . , n.
Let κ− = κ−C be a c-contraction with impacts γ−1 , . . . , γ

−
n

and γ+
1 , . . . , γ

+
n . Then it holds that

κ− C = (κ1 −1 C1)⊕ · · · ⊕ (κn −n Cn)

where κi −i Ci is a c-contraction with impacts γ+
i , γ

−
i .

Proof. Let κ and C be as in the proposition. Let κ− = κ −
C = κ−1 (ω1)⊕ · · · ⊕ κ−n (ωn) with ranking functions

κ−i (ωi) = κi0 + κi(ωi) +

{
γ+
i falls ω |= Ci
γ−i falls ω 6|= Ci

for i = 1, . . . , n as in the proof of Proposition 9. Every
κ−i = κi −i Ci is a c-change with impacts γ+

i , γ
−
i . It is
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left to show that this is a contraction, i.e. κ−i (Ci) = 0.
Assumption: There is an i such that κ−i (Ci) 6= 0. There-
fore, κ−(Ci) 6= 0. This is a contradiction, as κ − C is a
c-contraction.

Additionally, contraction operators that are based on c-
ignorations fulfil (MKocf ) and therefore (Pocf− ).

Proposition 11. A contraction operator that uses only c-
ignorations fulfils (MKocf ).

Proof. Let κ = κ1 ⊕ · · · ⊕ κn be a ranking function with
syntax splitting Σ1 ∪̇ · · · ∪̇ Σn and C = {C1, . . . , Cn} such
that Ci ⊆ Form(Ci) for i = 1, . . . , n. Let κ− = κ − C =
κ−1 (ω1)⊕ · · · ⊕ κ−n (ωn) such that

κ−i (ωi) = κi0 + κi(ωi) +

{
γ+
i if ω |= Ci
γ−i if ω 6|= Ci

are ranking functions for i = 1, . . . , n as in the proof of
Proposition 9.

Assumption: There is an i such that κi − Ci 6= κ−i .
Because c-ignorations with a single formula are unique,
κ−i cannot result from a c-ignoration of κi with Ci. κ−i
is the result of a c-change of κi with Ci. Therefore, ei-
ther κ−i (Ci) 6= 0 or κ−i (Ci) 6= 0. This implies either
κ−(Ci) 6= 0 or κ−(Ci) 6= 0, contradicting the fact that κ−C
is a c-ignoration.

In summary, none of the examined contraction operators
for total preorders fulfils (Pit−), while every c-change fulfils
(Pit−ocf− ). The Postulates (MKocf ) and (MKs) are fulfilled
by some, but not all considered contraction operators.

6 Conclusions and Further Work
In this paper, we introduced new syntax splitting postulates
for belief contractions. Each of the postulates (Pit−ocf− ),
(Pit−), and (K3) describes, for different frameworks, that a
contraction preserves a syntax splitting if the contracted in-
formation uses only variables from one partition of it. The
postulates (MKocf ), (MK), and (K1) together with (K2) de-
scribe that a contraction of beliefs with a syntax splitting
only affects the parts that share variables with the removed
information. For ranking functions, (Pit−ocf− ) and (MKocf )
together are equivalent to (Pocf− ). In a similar way, (K1),
(K2), and (K3) together are equivalent to (PK− ). An overview
over the new postulates is shown in Figure 1.

The postulates (MKs) and (Pit−s) were applied to the nat-
ural, the moderate, and the lexicographic contraction. The
natural and the moderate contraction fulfil (MK), the lexi-
cographic contraction does not fulfil it. None of the three
contraction operators fulfils (Pit−). C-changes were analysed
with respect to the postulates (MKocf ) and (Pit−ocf− ). While
all c-changes fulfil (Pit−ocf− ), only some of the contraction
operators based on c-changes fulfil (MKocf ).

In our current work, we are developing characterisations
for c-change operators that satisfy not only (Pit−ocf− ) but

(Pocf− ). For this, we will extend the selection strategies
for c-representations introduced in (Kern-Isberner, Beierle,
and Brewka 2020) to the more general c-change framework.
Further work also includes analysing more contraction op-
erators with respect to the new postulates and a deeper anal-
ysis of the relation between syntax splitting and c-changes.
This might not only provide insights on the operators but
also on syntax splitting in general and how it should be han-
dled. Furthermore, it will be interesting to generalize the
postulates so that they can be applied also in other settings.
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