
Multi-head Guarded Existential Rules Over Fixed Signatures

Georg Gottlob1 , Marco Manna2 , Andreas Pieris3
1Department of Computer Science, University of Oxford

2Department of Mathematics and Computer Science, University of Calabria
3School of Informatics, University of Edinburgh

georg.gottlob@cs.ox.ac.uk, manna@mat.unical.it, apieris@inf.ed.ac.uk

Abstract

Guarded existential rules form a robust rule-based language
for modelling ontologies. The central problem of ontology-
based query answering, as well as the notion of polynomial
combined rewritability, have been extensively studied during
the last years for this formalism. However, the relevant set-
ting where the underlying signature is fixed is far from being
well-understood. All the existing results on ontology-based
query answering and polynomial combined rewritability im-
plicitly assume rule-heads with one atom, whereas existential
rules in real ontologies are typically coming with multi-heads
consisting of several atoms. We aim to fill this gap.

1 Introduction
In ontology-based query answering (OBQA), ontologies are
used to enrich incomplete data with domain knowledge, en-
abling more complete answers to queries, typically conjunc-
tive queries (CQs). A notable range of ontology formalisms
for OBQA, which vary in syntax, expressivity and complex-
ity, has been developed during the last decade. Two promi-
nent families of languages, obtained from this extensive ef-
fort, are description logics (DL) (Baader et al. 2017), and
existential rules (a.k.a. tuple-generating dependencies and
Datalog± rules) (Baget et al. 2011; Calı̀ et al. 2010). Many
of the existing DL-based and rule-based ontology languages
guarantee good computational and model-theoretic proper-
ties by posing restrictions on the use of quantifiers. They are
essentially defined through the relativisation of quantifiers
by atomic formulas, similar to the guarded fragment of first-
order logic (Andréka, van Benthem, and Németi 1998). It is
generally agreed that guardedness is a paradigm that leads
to reasonably expressive and robust ontology languages.

The main rule-based ontology language that originated
from this paradigm, which is the main concern of this work,
is the class of guarded existential rules (Calı̀, Gottlob, and
Kifer 2013). It consists of sets of first-order sentences of the
form ∀x̄∀ȳ

(
φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)

)
, where φ (the body) and

ψ (the head) are conjunctions of relational atoms, and φ has
an atom that contains all the universally quantified variables.

Guarded Existential Rules. The problem of OBQA has
been rigorously studied for guarded existential rules during
the last years. The two main research directions were:

1. to pinpoint its computational complexity, and

2. to understand whether it can be solved by relying on stan-
dard database technology via query rewriting.

It is fair to claim that the above aspects of the problem
are rather well-understood. Concerning the first one, OBQA
for guarded existential rules is complete for PTIME in data
complexity (i.e., when the ontology and the query are fixed),
for NP when the underlying signature (or schema) is fixed
with the additional implicit assumption that rule-heads have
only one atom (further details about the latter assumption are
given below), for EXPTIME over signatures of fixed arity,
and for 2EXPTIME in combined complexity (Calı̀, Gottlob,
and Lukasiewicz 2012; Calı̀, Gottlob, and Kifer 2013).

Concerning query rewriting, the PTIME-hardness in data
complexity immediately implies that the problem in ques-
tion is not first-order rewritable. On the other hand, we know
that it is Datalog rewritable (Bárány, Benedikt, and ten Cate
2013; Gottlob, Rudolph, and Simkus 2014). At this point, let
us stress that the above results refer to the pure approach to
query rewriting, where the rewriting phase does not depend
on any database. With the aim of obtaining first-order rewrit-
ings, and thus being able to use a standard relational engine
for OBQA purposes, the work (Gottlob, Manna, and Pieris
2014) adopted the more refined approach to query rewriting
known as the combined approach, originally introduced in
the context of DLs (Lutz, Toman, and Wolter 2009), which
allows us to rewrite also the database in a query-independent
way. It was shown that indeed OBQA for guarded existential
rules is combined first-order rewritable. The really interest-
ing result of that work, though, is that in the fixed signature
case the rewriting process takes only polynomial time with
the additional implicit assumption that rule-heads mention
only one atom. Note that beyond fixed signatures, the com-
bined rewriting process is unlikely to be polynomial.

Multi-head Rules and Fixed Signatures. Despite the thor-
ough analysis of the OBQA problem for guarded existential
rules, there is a striking gap, which we reveal below, that
passed unnoticed until recently when it was brought to our
attention by a colleague of ours (Benedikt 2018).

Recall that an existential rule is typically defined as a first-
order sentence ∀x̄∀ȳ

(
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
, where φ and

ψ are conjunctions of relational atoms. For OBQA purposes,
the fact that in the head we can have a conjunction of atoms
is usually seen as syntactic sugar. The reason is because we

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

445

can always convert a set Σ of existential rules into a set Σ1

of existential rules with only atom in the head such that Σ
and Σ1, although not logically equivalent, are equivalent for
OBQA. This, in fact, relies on a very simple transformation
that replaces each existential rule σ ∈ Σ of the form

∀x̄∀ȳ
(
φ(x̄, ȳ) → ∃z̄ R1(x̄1, z̄1) ∧ · · · ∧Rn(x̄n, z̄n)),

where x̄i ⊆ x̄ and z̄i ⊆ z̄, with the set of existential rules

∀x̄∀ȳ
(
φ(x̄, ȳ) → ∃z̄Auxσ(x̄, z̄))

∀x̄∀z̄(Auxσ(x̄, z̄) → Ri(x̄i, z̄i)), for i ∈ {1, . . . , n},

with Auxσ being a fresh relation not occurring in Σ. Notice
further that if Σ is guarded, then also Σ1 is guarded.

Due to the above transformation, all the known complex-
ity results on OBQA for guarded existential rules, as well as
the result on polynomial combined first-order rewritability,
have been shown for existential rules with only one atom in
the head. The reason was purely technical, that is, to sim-
plify the technical definitions and proofs. Although this sim-
plifying assumption can be made, in general, without affect-
ing the generality of the results, this is not true in the relevant
setting of fixed signatures. This is because, even if we start
from a set of guarded existential rules over a fixed signature,
the obtained set of single-head guarded rules after the trans-
formation mentions an unbounded number of new relations
each of unbounded arity (see the auxiliary predicates).

As mentioned above, fixing the signature is a relevant set-
ting, which is close in spirit to data complexity. Typically,
the size of the signature is much smaller than the size of the
database, and therefore, it can be productively assumed to
be fixed. Furthermore, since the typical purpose of an ontol-
ogy is to model a certain domain of interest, the schema is
actually predetermined by the application domain in ques-
tion, which is another justification for considering the signa-
ture fixed. The above, together with the fact that it is more
convenient to design ontologies using multi-head existential
rules, it suggests that the gap in the analysis of OBQA for
guarded existential rules described above is a fundamental
one, which undoubtedly deserves our attention.

Research Challenges. From the above discussion, we are
left with the following key questions concerning the OBQA
problem for guarded existential rules over fixed signatures:
1. Does the NP-completeness result for single-head rules

carry over to multi-head rules?
2. Does the polynomial combined first-order rewritability

result for single-head rules carry over to multi-head rules?
The goal of this work is to provide answers to the above
questions, which will advance our knowledge on the impor-
tant problem of OBQA for guarded existential rules.

Contrary to what one might think, the fact that we need
to directly deal with multi-heads causes non-trivial compli-
cations, which were not an issue for single-head TGDs, that
require novel ideas. To better understand the different nature
of the two settings, let us stress that in the case of single-head
guarded existential rules, by fixing the underlying signature
we implicitly fix the whole ontology. The number of differ-
ent guarded non-isomorphic rule-bodies that can be formed

over a fixed signature is constant, which in turn implies that
we can only have a constant number of different single-head
guarded rules (up to variable renaming). This is far from
being true for multi-head guarded existential rules since we
can have an unbounded number of different rules with the
same guarded body due to the unguarded multi-heads.

Our Results. The main results of this work are as follows:
1. Before delving into the analysis that will provide answers

to our main research questions, we ask ourselves whether
multi-head guarded rules are strictly more expressive than
single-head ones. We show that, for each schema S (with
at least one binary relation), there exists a set of multi-
head guarded existential rules over S that cannot be equiv-
alently rewritten as a set of single-head guarded existen-
tial rules over S for OBQA purposes. In simple words,
if we are not allowed to introduce new relation symbols,
multi-heads are not merely syntactic sugar but come with
additional expressive power.

2. We then show that OBQA for multi-head guarded exis-
tential rules over fixed signatures is NP-complete. The
non-trivial result is the upper bound; the lower bound is
inherited from CQ evaluation. Towards showing the upper
bound, we obtain several results of independent interest:
(i) instance checking for multi-head guarded existential
rules over fixed signatures is in PTIME, (ii) OBQA for
multi-head guarded existential rules can be polynomially
reduced to multi-head linear existential rules (i.e., rules
with only one atom in the body) without increasing the
arity of the signature, and (iii) OBQA for multi-head lin-
ear existential rules is NP-complete for signatures of fixed
arity. The above are known for single-head rules, but can-
not be directly transferred to multi-head ones.

3. Finally, by exploiting the machinery introduced for es-
tablishing the NP upper bound, we can show that OBQA
for multi-head guarded existential rules over fixed signa-
tures is polynomially combined first-order rewritable; in
fact, the target query language is existential positive first-
order queries. Towards this end, we also show the same
for multi-head linear rules over signatures of fixed arity.
The latter is known for single-head linear rules, but it can-
not be straightforwardly transferred to multi-head ones.

2 Preliminaries
We consider the disjoint countably infinite sets C, N and V
of constants, nulls and variables, respectively. We refer to
constants, nulls and variables as terms. For an integer n ≥ 1,
we may write [n] for the set {1, . . . , n}.
Relational Instances. A (relational) schema S is a finite set
of relation symbols (or predicates) with associated arity. We
write ar(R) for the arity of a predicate R, and ar(S) for the
arity of S, i.e., the number maxR∈S{ar(R)}. An atom over
S is an expression of the form R(t̄), where R ∈ S and t̄ is a
tuple of terms. An instance over S is a (possibly infinite) set
of atoms over S with constants and nulls, while a database
over S is a finite instance over S with only constants. Given
a set of of terms T , let B(T,S) be the set of atoms that can
be formed using terms of T and predicates of S. We write

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

446

dom(I) for the set of terms in an instance I; this notation
naturally extends to sets of atoms.
Homomorphisms. A homomorphism from a set of atoms A
to a set of atomsB is a function h : dom(A)→ dom(B) that
is the identity on C with R(h(t̄)) ∈ B for every R(t̄) ∈ A.
We write A→ B for the fact that there is a homomorphism
from A to B. For a set of terms S, we say that A and B are
S-isomorphic, denoted A 'S B, if there is a 1-1 homomor-
phism from A to B such that h−1 maps B to A.
Queries. A conjunctive query (CQ) over a schema S is a
formula of the form q(x̄) := ∃ȳ

(
R1(v̄1) ∧ · · · ∧ Rm(v̄m)

)
,

where each Ri(v̄i) is an atom without nulls, each variable
mentioned in the v̄i’s appears either in x̄ or ȳ, and x̄ are the
free variables of q. If x̄ is empty, then q is a Boolean CQ. Let
I be an instance, and q(x̄) a CQ as above. The evaluation of
q(x̄) over I , denoted q(I), is the set of tuples c̄ ∈ C|x̄| such
that q(c̄)→ I; we may treat a conjunction of atoms as a set.
Tuple-generating dependencies. A tuple-generating de-
pendency (TGD) σ over a schema S is a first-order sentence
of the form ∀x̄∀ȳ

(
φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)

)
, where φ and ψ

are (non-empty) conjunctions of atoms over S that mention
only variables. We write σ as φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄), and use
comma instead of ∧ for joining atoms. We call φ and ψ the
body and head of σ, denoted body(σ) and head(σ), respec-
tively. An instance I satisfies σ, written I |= σ, if, whenever
φ(x̄, ȳ)→ I via h, then ψ(x̄, z̄)→ I via h′ that agrees with
h on x̄. The instance I satisfies a set Σ of TGDs, written
I |= Σ, if I |= σ for each σ ∈ Σ. Let TGD be the family
of all finite sets of TGDs. A class C of TGDs is a subset of
TGD. We write C[S] for the class {Σ ∈ C | Σ is over S}.
Ontological Query Answering. Given a database D and a
set Σ of TGDs, a model of D and Σ is a (possibly infinite)
instance I ⊇ D such that I |= Σ. We write mods(D,Σ) for
the set of models ofD and Σ. The certain answers to a CQ q
w.r.t.D and Σ is the set cert(q,D,Σ) =

⋂
I∈mods(D,Σ) q(I).

The main problem that we study in this work follows:

PROBLEM : OQA(C)
INPUT : A database D, a set Σ ∈ C of TGDs,

a CQ q(x̄), and a tuple c̄ ∈ dom(D)|x̄|.
QUESTION : Does c̄ ∈ cert(q,D,Σ)?

We are interested in the complexity of the problem when
the schema is fixed, i.e., the complexity of OQA(C[S]) for
a fixed schema S. We adopt the usual convention that when
we talk about the complexity of OQA(C) for fixed schemas,
we say that it is C-complete for a complexity class C if, for
each schema S, OQA(C[S]) is in C, and there is a schema
S such that OQA(C[S]) is C-hard. Analogously, we can talk
about the complexity of OQA(C) for schemas of fixed arity.
Guardedness and Linearity. A TGD σ is guarded if there
is an atom in body(σ), called guard, that contains all the
body variables. By convention, the leftmost body atom of a
guarded TGD σ is the guard, denoted guard(σ), and all the
other atoms are the side atoms of σ. Let G (resp., G1) be the
class of finite sets of guarded TGDs (resp., with one head
atom). A subclass of G, which is crucial for our work, is the

class of linear TGDs, denoted L, which collects all the sets
of TGDs with one body atom. We also write L1 for the class
of sets of linear TGDs with one head atom.

The Chase Procedure. The chase procedure is a useful tool
when reasoning with TGDs. Let us first define a single chase
application. A trigger for a set Σ of TGDs on an instance I
is a pair (σ, h), where σ ∈ Σ and h is a homomorphism
from body(σ) to I . An application of (σ, h) to I returns an
instance J = I ∪ h′(head(σ)), where h′ extends h in such
a way that (i) for each existentially quantified variable z of
σ, h′(z) ∈ N \ dom(I), and (ii) for distinct existentially
quantified variables z and w of σ, h′(z) 6= h′(w). Such a
trigger application is denoted as I〈σ, h〉J .

The main idea of the chase is, starting from a database D,
to exhaustively apply distinct triggers for the given set Σ of
TGDs on the instance constructed so far, and keep doing this
until a fixpoint is reached. This is formalized as follows:

• A finite sequence of instances (Ii)0≤i≤n, with D = I0
and n ≥ 0, is a chase derivation of D w.r.t. Σ if: (i) for
each 0 ≤ i < n, there is a trigger (σ, h) for Σ on Ii such
that Ii〈σ, h〉Ii+1; (ii) for each 0 ≤ i < j < n, assuming
that Ii〈σi, hi〉Ii+1 and Ij〈σj , hj〉Ij+1, σi = σj implies
hi 6= hj , and (iii) there is no trigger (σ, h) for Σ on In
such that (σ, h) 6∈ {(σi, hi)}0≤i<n. In this case, the result
of the chase is the (finite) instance In.

• An infinite sequence of instances (Ii)i≥0 is a chase
derivation of D w.r.t. Σ if: (i) for each i ≥ 0, there exists
a trigger (σ, h) for Σ on Ii such that Ii〈σ, h〉Ii+1; (ii) for
each i, j > 0 such that i 6= j, assuming that Ii〈σi, hi〉Ii+1

and Ij〈σj , hj〉Ij+1, σi = σj implies hi 6= hj ; and (iii) for
each i ≥ 0, and for every trigger (σ, h) for Σ on Ii, there
exists j ≥ i such that Ij〈σ, h〉Ij+1; this is the fairness
condition, and guarantees that all the triggers eventually
will be applied. The result of the chase is

⋃
i≥0 Ii.

We write chaseδ(D,Σ) for the result of a (finite or infinite)
chase derivation δ of D w.r.t. Σ. Here is the key property:

Proposition 1 Consider a database D, a set Σ of TGDs,
and a chase derivation δ of D w.r.t. Σ. For every instance
I ∈ mods(D,Σ), it holds that chaseδ(D,Σ)→ I .

In the rest of the paper, we will silently use a crucial con-
sequence of the above result, namely a tuple c̄ belongs to
cert(q,D,Σ) iff there exists a prefix (Ii)0≤i≤n, for n ≥ 0,
of a chase derivation of D w.r.t. Σ such that c̄ ∈ q(In).

We conclude our discussion by defining a useful relation
over the result of chase derivations. Consider a chase deriva-
tion δ = (Ii)i≥0 of a database D w.r.t. a set Σ of TGDs, and
assume that for each i ≥ 0, Ii〈σi, hi〉Ii+1, i.e., Ii+1 is ob-
tained from Ii via the application of the trigger (σi, hi) to
Ii. The parent relation of δ, denoted ≺pδ , is a binary rela-
tion over chaseδ(D,Σ) such that α ≺pδ β iff there is i ≥ 0

such that α ∈ hi(body(σi)) and β ∈ Ii+1 \ Ii. Let ≺p,+δ be
the transitive closure of ≺pδ . Note that ≺pδ is acyclic, i.e., it
forms a directed acyclic graph, whereas in the case of linear
TGDs it forms a forest, with the atoms ofD being the roots.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

447

3 Relative Expressiveness
We start with the question concerning the expressive power
of multi-head guarded TGDs. We adopt the notion of pro-
gram expressive power, introduced in (Arenas, Gottlob, and
Pieris 2018), which captures the essence of our question:
having available a schema S, is it the case that a set Σ ∈
G[S] can be rewritten as a set Σ′ ∈ G1[S] that can answer
the exact same CQs? As we shall see below, the answer to
this question is negative. Let us first properly introduce the
adopted notion of program expressive power.1

The expressive power of a set Σ of TGDs over a schema S,
denoted ep(Σ), is the set of triples (D, q(x̄), c̄), where D is
a database over S, q(x̄) is a CQ over S, and c̄ ∈ dom(D)|x̄|,
such that c̄ ∈ cert(q,D,Σ). The program expressive power
of a class of TGDs C is defined as the family of triples

pep(C) = {ep(Σ) | Σ ∈ C}.

For two classes of TGDs C1,C2, we say that C2 is more ex-
pressive than C1, written C1 ≤ C2, if pep(C1) ⊆ pep(C2).
In addition, we say that C2 is strictly more expressive than
C2, written C1 < C2, if C1 ≤ C2 and C2 6≤ C1. The next
result provides a definite answer to our first question:

Theorem 2 For a schema S with ar(S) > 1, G1[S] < G[S].

It is not difficult to verify that to establish Theorem 2 (in
fact, G[S] 6≤ G1[S] since G1[S] ≤ G[S] holds trivially), we
simply need to exhibit a set of TGDs Σ ∈ G[S] such that, for
every Σ1 ∈ G1[S], there exist a databaseD and a CQ q, both
over the schema S, with cert(q,D,Σ) 6= cert(q,D,Σ1). By
assumption, S contains at least one binary predicate R. We
define Σ as the singleton set consisting of the TGD

R(v, w) → ∃x∃y∃z R(x, y), R(y, z).

Towards a contradiction, assume that there exists a set Σ1 ∈
G1[S] such that, for every database D and CQ q, both over
S, it holds that cert(q,D,Σ) = cert(q,D,Σ1). Let DR =
{R(a, b)}, and consider also the Boolean CQs

line2 = ∃x∃y∃z (R(x, y) ∧R(y, z))

line3 = ∃x∃y∃z∃w (R(x, y) ∧R(y, z) ∧R(z, w)),

and for each P ∈ S \ {R}, the Boolean CQ

otherP = ∃x1 · · · ∃xar(P) P (x1, . . . , xar(P)).

Clearly, cert(line2, DR,Σ) 6= ∅, while cert(line3, DR,Σ)
and cert(otherP , DR,Σ), for each P ∈ S \ {R}, are empty.
Hence, the same holds for Σ1. It is an easy exercise to verify
that the following hold; otherwise, it will contradict one of
the above statements concerning certain answers under Σ1:

Fact 3 For every chase derivation δ of DR w.r.t. Σ1:

1. There is no atom of the form R(t, t) in chaseδ(DR,Σ1).
2. There are no atoms of the formR(t, t′), R(t′, t), with t 6=
t′, in chaseδ(DR,Σ1).

3. There is no atom of the form P (t̄), for a predicate P ∈ S
such that P 6= R, in chaseδ(DR,Σ1).
1A set of TGDs is also called program, influenced by logic pro-

gramming, and hence the name program expressive power.

The above, together with the fact that Σ1 is guarded, allow
us to conclude that, for every chase derivation δ = (Ii)i≥0 of
D w.r.t. Σ with Ii〈σi, hi〉Ii+1, σi has the formR(x, y)→ ψ,
where ψ is one of the following atomic formulas:

∃z∃wR(z, w) ∃z R(x, z) ∃z R(z, y).

But this implies that cert(line2, DR,Σ1) is empty, which is
a contradiction, and the claim follows.

4 Complexity Analysis
OQA(G1) is NP-complete for fixed schemas (Calı̀, Gottlob,
and Kifer 2013). The goal of this section is to show that this
result carries over to multi-head TGDs:

Theorem 4 OQA(G) is NP-complete for fixed schemas.

The lower bound is inherited from CQ evaluation, which
is NP-hard even for schemas with one binary relation. The
upper bound, on the other hand, is a rather non-trivial re-
sult, which cannot be immediately obtained from the fact
that OQA(G1) is in NP. Our proof proceeds in three steps:
1. We first focus on the simpler problem of instance check-

ing, and show that it is in PTIME for fixed schemas.
2. We reduce OQA(G[S]), for a schema S, to OQA(L[S′]),

where S′ ⊇ S with ar(S) = ar(S′), and we further show,
by exploiting point (1), that the given reduction is a poly-
nomial time reduction whenever S is fixed.

3. We then show that OQA(L) is NP-complete for schemas
of fixed arity. This result, which is of independent interest,
together with the above reduction, establishes the desired
NP upper bound claimed in Theorem 4.

4.1 Step 1: Instance Checking
The problem that we study in this section, which is actually
a special case of ontological query answering, is as follows:

PROBLEM : IC(C)
INPUT : A database D, a set Σ ∈ C of TGDs,

a CQ R(x̄), and c̄ ∈ dom(D)ar(R).
QUESTION : Does c̄ ∈ cert(R(x̄), D,Σ)?

The goal is to show the following complexity result:

Theorem 5 IC(G) is in PTIME for fixed schemas.

IC(G1) is in PTIME for fixed schemas (Calı̀, Gottlob, and
Kifer 2013), which has been shown via a sophisticated alter-
nating algorithm that uses logarithmic space. However, this
result cannot be straightforwardly transferred to multi-head
TGDs. We proceed to establish Theorem 5 via a novel alter-
nating algorithm that is designed to operate on multi-head
TGDs. But first we need to introduce some auxiliary results.

Guarded Types. A key notion when reasoning with guarded
TGDs is the type of an atom. Consider a database D, and a
set Σ ∈ G of TGDs. Let δ = (Ii)i≥0 be a (finite or infinite)
chase derivation of D w.r.t. Σ with Ii〈σi, hi〉Ii+1. Given
an atom α ∈ chaseδ(D,Σ), its δ-type (w.r.t. D and Σ), de-
noted typeδ(α), is the set {β ∈ chaseδ(D,Σ) | dom(β) ⊆
dom(α)}, i.e., all the atoms in the result of δ that share terms

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

448

with α. The key property of the type, which has been shown
in (Calı̀, Gottlob, and Kifer 2013) for single-head TGDs,
and it can be easily extended to multi-head TGDs, it roughly
states that the set of atoms in chaseδ(D,Σ) that can be de-
rived from α (used as a guard) is determined by the δ-type
of α. To make this precise we need some auxiliary notions.

The guarded parent relation of δ, denoted≺gp
δ , is a binary

relation over chaseδ(D,Σ) such that α ≺gp
δ β iff there exists

i ≥ 0 with α = hi(guard(σi)) and β ∈ Ii+1 \ Ii. Let ≺gp,+
δ

be the transitive closure of≺gp
δ . Note that≺gp

δ forms a forest
with the atoms of D being the roots. We can now define the
notion of projection of δ, which will allow us to state the key
property of the type. Consider an atom α ∈ chaseδ(D,Σ),
and let (ij)j>0 be the sequence of indices, with 0 ≤ i1 <
i2 < i3 < · · · such that, for each ` ≥ 0, ` ∈ {ij}j>0

iff h`(guard(σ`)) = α or α ≺gp,+
δ h`(guard(σ`)). Simply

stated, (ij)j>0 collects all the applications in δ, in ascending
order, that use α or a≺gp

δ -descendant of α as the guard. The
α-projection of δ, denoted δ[α], is the sequence of instances
(Ji)i≥0, with J0 = typeδ(α), and, for j > 0,

Jj = Jj−1 ∪
{
β ∈ Iij+1 | hij (guard(σij)) ≺

gp
δ β

}
.

We can now formally state the key property of the notion of
type, which heavily relies on guardedness:

Lemma 6 Consider a database D, and Σ ∈ G. For a chase
derivation δ of D w.r.t. Σ, and an atom α ∈ chaseδ(D,Σ),
δ[α] is a chase derivation of typeδ(α) w.r.t. Σ.

Pivotal Atoms. Our alternating algorithm exploits the exis-
tence of some special atoms, called pivotal, for guarded sub-
sets of the result of a derivation. Roughly, to check whether a
guarded set of atoms Q is in the result of some chase deriva-
tion δ, it suffices to check whether Q is in the result of the
α-projection of δ with α being a pivotal atom for Q.

Consider a database D, and a set Σ ∈ G of TGDs, both
over a schema S. A finite set of atoms Q ⊆ B(C ∪N,S)
is guarded if it has an atom α such that dom(α) = dom(Q).
We say that Q is ungrounded if each of its atoms contains
at least one null of N. Let null(Q) be the set of nulls in Q.
Consider now a chase derivation δ = (Ii)i≥0 of D w.r.t. Σ
with Ii〈σi, hi〉Ii+1, and a set of atoms Q ⊆ B(C ∪ N,S)
that is guarded and ungrounded. An atom α ∈ chaseδ(D,Σ)
is δ-pivotal for Q if α = hi(guard(σi)) for some i ≥ 0 such
that null(Q) 6⊆ dom(Ii), while null(Q) ⊆ dom(Ii+1); i.e.,
a δ-pivotal atom for Q is an atom of chaseδ(D,Σ) in which
the nulls in Q occur together for the first time according to
δ. The key lemma concerning pivotal atoms follows:

Lemma 7 Consider a database D, and a set Σ ∈ G, both
over a schema S. Let δ be a chase derivation of D w.r.t. Σ,
and Q ⊆ B(C ∪N,S) be a guarded and ungrounded set of
atoms. The following are equivalent:

1. Q ⊆ chaseδ(D,Σ).
2. There is an atom α ∈ chaseδ(D,Σ) that is δ-pivotal for
Q such that Q ⊆ chaseδ[α](typeδ(α),Σ).

3. There is exactly one atom α ∈ chaseδ(D,Σ) that is δ-
pivotal for Q, and Q ⊆ chaseδ[α](typeδ(α),Σ).

The direction (3) ⇒ (2) holds trivially, whereas (2) ⇒
(1) holds since chaseδ[α](typeδ(α),Σ) ⊆ chaseδ(D,Σ). It
remains to show (1)⇒ (3). Let γ ∈ Q be the atom that con-
tains all the terms of dom(Q), and let α, β ∈ chaseδ(D,Σ)

be atoms such that α ≺gp
δ β, β ≺gp,+

δ γ, null(α) 6⊆ null(β),
and null(β) ⊆ null(γ). By guardedness, α is the δ-pivotal
atom for Q, and, for each α′ ∈ Q, it holds that α ≺gp,+

δ α′

or α′ ∈ typeδ(α). Hence, Q ⊆ chaseδ[α](typeδ(α),Σ).2

The Alternating Algorithm

Given a databaseD, a set Σ ∈ G, a CQR(x̄), and a tuple c̄ ∈
dom(D)ar(R), checking whether c̄ ∈ cert(R(x̄), D,Σ) boils
down to checking whetherR(c̄) belongs to chaseδ(D,Σ) for
some chase derivation δ ofD w.r.t. Σ. Lemma 7 suggests the
following strategy for the latter task: find σ ∈ Σ and a map-
ping h from the variables in body(σ) to dom(D) ∪N such
thatR(c̄) ∈ h(head(σ)), and check whether there exists a δ-
pivotal atom for the ungrounded subset of h(body(σ)), for
some chase derivation δ ofD w.r.t. Σ, while for each ground
atom in h(body(σ)) recursively apply the above strategy.
Our alternating algorithm, which is described in detail next,
performs the above steps in parallel universal computations,
which ensures that only logarithmic space is needed. Recall
that polynomial time coincides with alternating logspace.

Some Preparation. Let us first introduce some useful no-
tions. Since we can use only logarithmic space, we cannot
afford to explicitly store all the atoms generated via a single
chase step since we deal with multi-heads; this could be pos-
sible in the case of single-head TGDs. Therefore, we need a
way to compactly represent such a set of atoms, while such
a representation should take only logspace. This is done via
a so-called (D,Σ)-step, which is a compact representation
of the guard atom of a chase step, together with its type, and
the atoms that are generated via this chase step.

Let ∆Σ = {⊥1, . . . ,⊥2·(ar(Σ)+1)} that collects all the dif-
ferent sorts of nulls that are needed to perform our check us-
ing a bounded number of nulls, which in turn will ensure that
we use only logspace. Let ∆?

Σ = {si | s ∈ ∆Σ}j∈[`Σ] ⊆ N,
where `Σ = maxσ∈Σ{`σ} with `σ be the number of exis-
tential variables in σ. A (D,Σ)-step for a set S (∆Σ is a
tuple (σ, h, s, T) – we assume that Σ is over S – where :

- σ is a TGD of Σ,

- h : dom(body(σ))→ dom(D) ∪∆?
Σ,

- s ∈ ∆Σ \ S, and

- h(body(σ)) ⊆ T ⊆ B(dom(h(guard(σ))),S).

Such a (D,Σ)-step should be interpreted as follows. The
triple (σ, h, s) encodes the set of atoms h′(head(σ)), where
h′ extends h as follows: if z1, . . . , zk are the existential vari-
ables of σ, then h′(zi) = si, i.e., the sort s and the variable zi
uniquely determine the null that is assigned to zi. We denote
this set of atoms [[σ, h, s]]. Note that the fresh nulls of sort s
in [[σ, h, s]] do not occur in h(guard(σ)) since h(guard(σ))
does not contain a null of sort s. Moreover, T corresponds
to the type of h(guard(σ)). For a set N ⊆ ∆?

Σ, it would be

2Note that δ[α] is well defined due to Lemma 6.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

449

Algorithm 1: Instance Checking

Entail(D,Σ, R(x̄), c̄)

if R(c̄) ∈ D then
return Accept

else
guess σ ∈ Σ and
h : dom(body(σ))→ dom(D) ∪∆?

Σ
if R(c̄) 6∈ h(head(σ)) then

return Reject
else

return Proof(h(body(σ)))

Proof(Q)

Q′ := Q \
{
R(c̄) ∈ Q | c̄ ∈ Car(R)

}
N := null(Q′)
universally do:
. universally select every atom R(c̄) ∈ Q \Q′

return Entail(D,Σ, R(x̄), c̄)
. if N = ∅ then

return Accept
else

guess (D,Σ)-step (σ, h, s, T) for sΣ(σ, h)
if N ⊆ null(h(guard(σ))) or N 6⊆ {s1, . . . , s`σ}
then

return Reject
else

universally do:
. universally select every atom β ∈ Q′ \ T

return Reach(σ, h, s, T, β)
. return Proof(T)

Reach(σ, h, s, T, β)

guess an atom α ∈ [[σ, h, s]]
if α = β then

return Accept
else

S := sΣ(σ, h) ∪ {s} ∪ sΣ(null(β))
guess (D,Σ)-step (σ′, h′, s′, T ′) for S
if h′(guard(σ′)) 6= α then

return Reject
else

universally do:
. return Reach(σ′, h′, s′, T ′, β)
. universally select every atom β′ ∈ T ′ \ T

return Reach(σ, h, s, T, β′)

useful to be able to extract the set of sorts of nulls occurring
in N , i.e., the set sΣ(N) = {s | sj ∈ N} ⊆ ∆Σ. We write
sΣ(σ, h) instead of the formal sΣ(null(h(body(σ)))).

Description of the Algorithm. Our alternating algorithm is
depicted in the box above. Here is a detailed description:

I The procedure Entail implements the strategy discussed
above: find σ ∈ Σ and a mapping h that maps var(body(σ))

to dom(D) ∪ ∆?
Σ with R(c̄) ∈ h(head(σ)), and check, via

the procedure Proof, that h(body(σ)) is derivable via some
chase derivation. Note that we cannot afford to use an unlim-
ited number of null values since we have limited space. The
nulls of ∆?

Σ are enough for faithfully checking the above.

I The procedure Proof checks whether a set of atoms Q is
derivable via some chase derivation. Each ground atom ofQ
is proved in a parallel universal computation by recursively
calling the procedure Entail. The remaining atoms form a
guarded and ungrounded set Q′; if null(Q) is empty, which
means that Q′ is empty, then the algorithm accepts. In a
parallel universal computation, it checks whether there is a
δ-pivotal atom α for Q′, for some chase derivation δ, such
that Q′ is derivable by applying chase steps starting from
the δ-type of α (this is enough due to Lemma 7; notice that
here we simply exploit the existence of a δ-pivotal atom, i.e.,
item (2) of Lemma 7). The guessed (D,Σ)-step (σ, h, s, T),
actually h(guard(σ)), corresponds to the δ-pivotal atom for
Q′, and the algorithm performs in parallel universal compu-
tations the following checks: (i) each atom β of Q′, which
is not already in the δ-type of h(guard(σ)) given by T , is
derivable by applying chase steps starting from T , which is
done in parallel universal computations by calling the proce-
dure Reach, and (ii) T is indeed the δ-type of h(guard(σ)),
which is done by recursively calling the procedure Proof.

I The procedure Reach actually checks whether, for some
chase derivation δ of T w.r.t. Σ, h(guard(σ)) ≺gp,+

δ β. It
starts by guessing an atom α from [[σ, h, s]]. If α is the atom
that we are targeting, namely β, then it accepts; otherwise,
it proceeds to check whether α ≺gp,+

δ β. Due to Lemma 6,
to check whether α ≺gp,+

δ β, it suffices to consider only the
δ-type of α. In fact, the guessed (D,Σ)-step (σ′, h′, s′, T ′)
provides the trigger to apply at the next step, that is, (σ′, h′)
with h′(guard(σ′)) = α, the sort of the fresh nulls that will
appear in the generated atoms, that is, s′, and the δ-type of α,
that is, T ′. It remains to verify that (i) α ≺gp,+

δ β, and (ii) T ′
is indeed the δ-type of α. The former check is done by recur-
sively calling the procedure Reach with input (σ′, h′, s′, T ′).
For the latter check, one may suggest that the algorithm can
simply call Proof(T ′). It should not be overlooked, though,
that β and T ′ may share null values, and this fact should be
preserved. However, by calling Proof(T ′) in a parallel uni-
versal computation, we loose this connection between β and
T ′, which may lead to unsound results. The key observation
is that T ′ \ T is a guarded and ungrounded set of atoms that
has the same δ-pivotal atom as Q′ \T (the set of atoms from
which β is coming from), which, by item (3) of Lemma 7,
is unique; this atom is h(guard(σ)). Hence, to prove T ′, the
algorithm recursively calls for each atom β′ ∈ T ′ \ T , in a
parallel universal computation, Reach(σ, h, s, T, β′).

By Lemmas 6 and 7, the algorithm Entail is correct, i.e.,
Entail(D,Σ, R(x̄), c̄) accepts iff R(c̄) ∈ chaseδ(D,Σ), for
some chase derivation δ of D w.r.t. Σ. Furthermore, at each
step of its computation, the algorithm uses logarithmic space
for storing elements of dom(D), and auxiliary pointers; re-
call that the schema is fixed. Since polynomial time coin-
cides with alternating logarithmic space, Theorem 5 follows.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

450

4.2 Step 2: Linearization
We now proceed with the second step of the proof for show-
ing the NP upper bound stated in Theorem 4. We show that:

Lemma 8 For a fixed schema S, there exists a schema S′ ⊇
S with ar(S) = ar(S′) such that OQA(G[S]) can be reduced
in polynomial time to OQA(L[S′]).

The above has been shown for single-head TGDs in (Got-
tlob, Manna, and Pieris 2014). By using the property of the
type for multi-head guarded TGDs discussed in the previous
section (Lemma 6), we can adapt the reduction in (Gottlob,
Manna, and Pieris 2014) in order to operate on multi-head
TGDs. We only give the high-level idea of the reduction.

LetD be a database, and Σ a set from G[S]. Our goal is to
devise a databaseD∗, and a set Σ∗ ∈ L[S′], with S′ ⊇ S and
ar(S) = ar(S′), such that, for every CQ q, cert(q,D,Σ) =
cert(q,D∗,Σ∗). For D∗ the idea is to encode an atom α ∈
D and its δ-type, for some chase derivation δ of D w.r.t. Σ,
as an atom of the form [τ](·), where τ is a symbolic encoding
of α and its δ-type. For example, given R(a, b) ∈ D with

typeδ(R(a, b)) = {R(a, b), S(b, a), T (a), T (b)},

we can encode R(a, b) and its δ-type as the atom

[R(1, 2), {S(2, 1), T (1), T (2)}](a, b).

When it comes to Σ∗, the intention is, for a TGD σ ∈ Σ, to
encode the shape of the type τ of the guard of σ in a pred-
icate [τ], and then replace σ with a linear TGD that uses in
its body an atom of the form [τ](·). However, we need an ef-
fective way to compute the type of an atom α by completing
its known part, which is inherited from the type of the guard
atom that generates α, with atoms that mention the new null
values invented in α. This exploits the main property of the
type discussed in the previous section. In particular, for each
α obtained due to the application of the trigger (σ, h), where
σ = ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) ∈ Σ, we can construct the type
of α from h′(ψ(x̄, z̄)), where h′ extends h employed during
this application, together with the restriction of the type of α
to the terms h(x̄). To construct the predicates [τ] we heavily
rely on instance checking for guarded TGDs. Thus, the fact
D∗ and Σ∗ can be constructed in polynomial time follows
from Theorem 5, which shows that IC(G[S]) is in PTIME.

4.3 Step 3: The Linear Case
We now proceed with the last step of the proof for establish-
ing the NP upper bound in Theorem 4. We show that:

Theorem 9 OQA(L) is NP-complete for fixed arity.

Note that OQA(L1) is NP-complete for fixed arity (Calı̀,
Gottlob, and Lukasiewicz 2012), but it cannot be directly
transferred to multi-head TGDs. We proceed to discuss the
proof of Theorem 9. The NP-hardness holds even for CQ
evaluation for schemas consisting of a single binary relation.
The interesting task is to show the upper bound. To this end,
we rely on the notion of polynomial witness property.

Definition 10 A class C ⊆ TGD of TGDs enjoys the poly-
nomial witness property (PWP) if there exists a polynomial
pol(·) such that, for every database D, set Σ ∈ C, CQ q(x̄),

and tuple c̄ ∈ C|x̄|, c̄ ∈ cert(q,D,Σ) implies the existence
of a sequence (Ii)0≤i≤n, with n ≤ pol(||Σ||+ ||q||), that is
a prefix of a chase derivation of D w.r.t. Σ, and c̄ ∈ q(In).3

The PWP guarantees that if c̄ ∈ cert(q,D,Σ), then this
can be realized after polynomially many chase applications.
This leads to a simple guess-and-check algorithm for estab-
lishing that OQA(C) is in NP for any class C that enjoys the
PWP: guess a sequence of instances δ = (Ii)0≤i≤n, with
I0 = D and Ii+1) Ii, and a sequence of TGD-mapping
pairs ((σi, hi))0≤i<n, where 0 ≤ n ≤ pol(||Σ|| + ||q||),
where pol(·) is the polynomial provided by the PWP, to-
gether with an additional mapping from the variables in q
to dom(In), and then verify that δ is a chase derivation of D
w.r.t. Σ, and that c̄ ∈ q(In). Thus, to establish the NP upper
bound in Theorem 9, it suffices to show the following result:

Theorem 11 For a schema S of fixed arity, L[S] enjoys the
polynomial witness property.

The above holds for L1[S]; implicit in (Calı̀, Gottlob, and
Lukasiewicz 2012). However, it cannot be straightforwardly
transferred to L[S]. Our proof proceeds in two steps:

1. We provide a characterization of the PWP for subclasses
of L via parsimonious quasi chase derivations, which are
sequences that are “almost” a prefix of a chase derivation,
and involve polynomially many distinct triggers.

2. We then show that in the case of L[S], for a schema S of
fixed arity, the fact that a tuple is a certain answer can be
witnessed via a parsimonious quasi chase derivation.

Before we give further details for the above two steps, we
first need to introduce quasi chase derivations.

Quasi Chase Derivations. Let (σ, h) be a trigger for a set Σ
of TGDs on an instance I . A partial application of (σ, h) to
I returns an instance J = I ∪K, where K ⊆ h′(head(σ)),
while h′ extends h in such a way that for each existentially
quantified variable z of σ, h′(z) ∈ N \ dom(I), and for dis-
tinct existentially quantified variables z and w of σ, h′(z) 6=
h′(w). Such a partial application is denoted I〈σ, h〉pJ . A
sequence of instances (Ii)0≤i≤n, for n ≥ 0, is a quasi chase
derivation (resp., quasi chase derivation with total applica-
tions) of D w.r.t. Σ if, for each 0 ≤ i < n, there exists
a trigger (σ, h) for Σ on Ii such that Ii〈σ, h〉pIi+1 (resp.,
Ii〈σ, h〉Ii+1). Observe that a quasi chase derivation with to-
tal applications is trivially a quasi chase derivation, but the
opposite is not necessarily true. A quasi chase derivation
δ = (Ii)0≤i≤n, with Ii〈σi, hi〉pIi+1, is k-parsimonious, for
k ≥ 0, if |

⋃
0≤i<n{(σi, hi)}| ≤ k, i.e., at most k dis-

tinct triggers are involved in δ. The parent relation of δ,
denoted ≺pδ , and its transitive closure ≺p,+δ , are defined as
expected. In a nutshell, a quasi chase derivation is almost a
chase derivation, but it is not exactly a chase derivation for
the following three reasons: (1) applications may be partial,
that is, during a trigger application some atoms are not gen-
erated, (2) tiggers may repeat, i.e., the same trigger is used
in different applications, and (3) fairness is not satisfied, i.e.,
some triggers have not been applied. Of course, in the case

3As usual, we write ||O|| for the size of a syntactic object O.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

451

of quasi chase derivations with total applications only the
last two reasons apply. Moreover, although triggers may re-
peat in a k-parsimonious quasi chase derivation, at most k
distinct triggers have been used for its generation.

Contractions. Consider a databaseD, a set Σ ∈ L of TGDs,
and a quasi chase derivation δ = (Ii)0≤i≤n, for n ≥ 0, of
D w.r.t. Σ. Let A ⊆ In, and h a mapping from dom(A)
to dom(In). The (A, h)-contraction of δ is the sequence of
instances δ′ = (Ji)0≤i≤n such that, for each 0 ≤ i ≤ n

Ji = Ii \
{
α | α ∈ Ii and A ≺p,+δ α

}
∪{

h(α) | α ∈ Ii and A ≺p,+δ α
}
.

For brevity, we write A ≺p,+δ α for the fact that β ≺p,+δ α
for some atom β ∈ A. Simply stated, the (A, h)-contraction
of δ is essentially what we obtain after updating, according
to the mapping h, the atoms in the subtrees of ≺pδ rooted at
A; recall that, due to linearity, ≺pδ forms a rooted forest. We
can now discuss the details of the proof for Theorem 11.

PWP and Parsimonious Quasi Chase Derivations

The characterization of PWP via parsimonious quasi chase
derivations (step 1 above) is given by the following result:

Proposition 12 For C ⊆ L, the following are equivalent:

1. C enjoys the PWP.
2. There is a polynomial pol(·) such that, for every database
D, set Σ ∈ C, CQ q(x̄), and c̄ ∈ C|x̄|, c̄ ∈ cert(q,D,Σ)
implies there exists a pol(||Σ||+||q||)-parsimonious quasi
chase derivation with total applications (Ii)0≤i≤n, where
n ≥ 0, of D w.r.t. Σ such that c̄ ∈ q(In).

Let k = pol(||Σ|| + ||q||). It is clear that (1) implies (2)
since a prefix of a chase derivation of length k of D w.r.t. Σ
is by definition a k-parsimonious quasi chase derivation of
D w.r.t. Σ. The other direction, however, is not immediate
since a k-parsimonious quasi chase derivation δ ofD w.r.t. Σ
with total applications is not necessarily a prefix of length at
most k of a chase derivation of D w.r.t. Σ since triggers may
repeat. Thus, if we could eliminate from δ the repeated trig-
gers, without introducing more repetitions of triggers, then
we will end up with a finite prefix of a chase derivation of D
w.r.t. Σ of length at most k, which in turn implies the PWP.
This can be achieved via iterative contractions.

Assume that a trigger (σ, h) has been applied at steps i, j,
for i < j, with Hi and Hj being the set of atoms generated
at the i-th and j-th step, respectively. The key observation is
that Hi 'S Hj , where S = dom(Hi) ∩ dom(Hj). Due to
linearity, we can safely move the subtrees rooted at Hj un-
der the corresponding atoms of Hi, and consistently update
the atoms, without introducing more repetitions of triggers.
This is essentially what the (Hj , µ

−1)-contraction of δ does,
with µ being the S-isomorphism from Hi to Hj . This is for-
malized by the following technical lemma. For a quasi chase
derivation δ = (Ii)0≤i≤n with Ii〈σi, hi〉Ii+1, we write Hi

δ
for the set of atoms generated at the i-th step, i.e., the set
of atoms h′i(head(σi)), where h′i is the extension of hi em-
ployed during the trigger application Ii〈σi, hi〉Ii+1.

Lemma 13 Consider a database D, Σ ∈ L, CQ q(x̄), and
c̄ ∈ C|x̄|. Let δ = (Ii)0≤i≤n be a quasi chase derivation
with total applications of D w.r.t. Σ with Ii〈σi, hi〉Ii+1, and
assume c̄ ∈ q(In). For a pair of indices 0 ≤ k < ` < n with
(σk, hk) = (σ`, h`), let δk,` = (Ji)0≤i≤n be the (H`

δ , µ
−1)-

contraction of δ, with µ being the (dom(Hk
δ) ∩ dom(H`

δ))-
isomorphism from Hk

δ to H`
δ . The following hold:

1. δk,` is a quasi chase derivation with total applications of
D w.r.t. Σ with Ji〈σi, µi〉Ji+1 for some mapping µi.

2. There is no α ∈ Jn such that H`
δ ≺

p,+
δk,`

α.

3. For each 0 ≤ i, j < n, (σi, hi) = (σj , hj) if and only if
(σi, µi) = (σj , µj).

4. c̄ ∈ q(Jn \H`
δ).

We can now explain how the direction (2) implies (1) is
shown. Assume that c̄ ∈ cert(q,D,Σ). By hypothesis, there
exists a pol(||Σ|| + ||q||)-parsimonious quasi chase deriva-
tion with total applications δ = (Ii)0≤i≤n ofD w.r.t. Σ such
that c̄ ∈ q(In). By iteratively applying Lemma 13, we can
eventually construct a pol(||Σ|| + ||q||)-parsimonious quasi
chase derivation with total applications δ′ = (Ji)0≤i≤n ofD
w.r.t. Σ with Ji〈σi, hi〉Ji+1 such that, for each 0 < j < n
for which there exists 0 ≤ i < j with (σi, hi) = (σj , hj):

- There is no α ∈ Jn such that Hj
δ ≺

p,+
δ′ α.

- c̄ ∈ q(Jn \Hj
δ).

Therefore, we can drop the applications in δ′ that use a trig-
ger that has been applied before, and get δ′′ = (Ki)0≤i≤m,
withm ≤ pol(||Σ||+ ||q||), that is a prefix of a chase deriva-
tion of D w.r.t. Σ, and c̄ ∈ q(Km), as needed.

OQA via Parsimonious Quasi Chase Derivations

We now show that in the case of the class L[S], for a schema
S, the fact that a tuple is a certain answer can be witnessed
via a k-parsimonious quasi chase derivation, where k de-
pends polynomially on the cardinality of the set of TGDs Σ,
the cardinality of the schema S, and the number of atoms in
the CQ q, and exponentially on ar(S). This in turn implies
that in the case of a schema of fixed arity, k is a polynomial
(step 2 above). More precisely, assuming that

Tq,Σ = |Σ| · |S| ·
(
2 · |q| · ar(S) + ar(S)

)ar(S)
,

we can show the following result:

Proposition 14 Consider a database D, a set Σ ∈ L[S], a
CQ q(x̄), and c̄ ∈ C|x̄|. If c̄ ∈ cert(q,D,Σ), then there is a
Tq,Σ-parsimonious quasi chase derivation with total appli-
cations (Ji)0≤i≤n of D w.r.t. Σ such that c̄ ∈ q(Jn).

To establish the above result it suffices to show that the
prefix (Ii)0≤i≤n of some chase derivation of D w.r.t. Σ that
witnesses the fact that c̄ ∈ cert(q,D,Σ), i.e., c̄ ∈ q(In), can
be converted into a Tq,Σ-parsimonious quasi chase deriva-
tion with total applications (Ji)0≤i≤n ofD w.r.t. Σ such that
c̄ ∈ q(Jn). We can rely again on iterative contractions.

Consider two S-isomorphic atoms α and β of In, where
S is the set of terms occurring in h(q(c̄)) with h being a ho-
momorphism that maps q(c̄) to In. Due to linearity, we can

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

452

safely move the subtree rooted at β under α, and consistently
update its atoms, without affecting the fact that c̄ is a certain
answer. We can achieve this via the (β, µ−1)-contraction of
(Ii)0≤i≤n, with µ being the S-isomorphism from α to β.4
Notice, however, that such a contraction may create partial
applications and repeated triggers. Hence, the result is not
necessarily a prefix of a chase derivation, but a quasi chase
derivation. This is formalized by the following lemma.

Lemma 15 Consider a databaseD, Σ ∈ L, a CQ q(x̄), and
c̄ ∈ C|x̄|. Let δ = (Ii)0≤i≤n be a quasi chase derivation of
D w.r.t. Σ such that q(c̄) → In via h. For atoms α, β ∈ In
such that β 6≺p,+δ α, and α 'S β, where S = dom(h(q(c̄))),
let δα,β = (Ji)0≤i≤n be the (β, µ−1)-contraction of δ, with
µ being the S-isomorphism from α to β. Then:

1. δα,β is a quasi chase derivation of D w.r.t. Σ.

2. There is no γ ∈ Jn such that β ≺p,+δα,β γ.

3. For each γ, γ′ ∈ Jn, γ 'S γ′ iff µ(γ) 'S µ(γ′).
4. q(c̄)→ Jn via h.

We can now explain how Proposition 14 is shown. By hy-
pothesis, there exists a prefix δ = (Ii)0≤i≤n, for n ≥ 0, of
a chase derivation of D w.r.t. Σ such that q(c̄) → In via a
homomorphism h. By definition, δ is a quasi chase deriva-
tion of D w.r.t. Σ. The binary relation 'S over In, where
S = dom(h(q(c̄))), is an equivalence relation. Let In/'S
be the set of all equivalence classes in In w.r.t.'S . For each
equivalence classC in In/'S , its canonical atom is arbitrar-
ily chosen from the set of atoms {α ∈ C | there is no β ∈
C such that β ≺p,+δ α}. For an atom α ∈ In, we write [α]
for the canonical atom of its equivalence class, and ια for the
S-isomorphism that maps [α] to α. We proceed to construct
a Tq,Σ-parsimonious quasi chase derivation with total appli-
cations δ′ = (Ji)0≤i≤n of D w.r.t. Σ such that c̄ ∈ q(Jn)).

Let α ∈ In with α 6= [α]. By Lemma 15, the (α, ι−1
α)-

contraction δα = (Iαi)0≤i≤n of δ enjoys the following:

- δα is a quasi chase derivation of D w.r.t. Σ.

- There is no β ∈ Jn such that α ≺p,+δα β.

- For each β, β′ ∈ Jn, β 'S β′ iff µ(β) 'S µ(β′).

- q(c̄)→ Jn via h.

We can therefore iteratively apply Lemma 15 as discussed
above, until we get a quasi chase derivation δ� = (I�i)0≤i≤n
of D w.r.t. Σ such that the following hold:

1. For each α ∈ I�n, α 6= [α] implies there is no β ∈ I�n such
that α ≺δ� β.

2. q(c̄)→ I�n via h.

Note that δ� is not necessarily with total applications. How-
ever, it can be converted into one with total applications by
simply adding the atoms that are needed in order to ensure
that every application in δ� is total. Let δ′ = (Ji)0≤i≤n
be the resulted quasi chase derivation with total applications
of D w.r.t. Σ. It is clear that q(c̄) → Jn via h, and thus
c̄ ∈ q(In). It remains to show that δ′ is Tq,Σ-parsimonious.

4For a singleton instance {γ} we simply write γ.

Since in δ′ only canonical atoms trigger TGDs (the first
property of δ� stated above, which is inherited by δ′), it suf-
fices to count how many triggers for Σ on the instance

K = {α | α is the canonical atom of a set C ∈ Jn/'S}

can be formed. We can assume, w.l.o.g. due to linearity, that
in δ′ at most |q| atoms from D trigger a TGD of Σ, which
implies that K contains at most |q| atoms of D. Therefore,
|K| ≤ |S|·

(
2·|q|·ar(S)+ar(S)

)ar(S)
, which is the number of

non-S+-isomorphic atoms over S that can be formed, where
S+ consists of the set S, and the set of constants T occurring
in the atoms of D that trigger a TGD. Actually, the above
upper bound is a consequence of the fact that |S| ≤ |q|·ar(S)
and |T | ≤ |q| · ar(S). Since each atom of K can trigger
several TGDs of Σ, the total number of triggers for Σ on K
that can be formed is Tq,Σ, and Proposition 14 follows.

Theorem 11 follows from Propositions 12 and 14.

5 Polynomial Combined Rewritability
We now turn our attention to the notion of polynomial com-
bined first-order rewritability. A database rewriter is a func-
tion that receives as input a database and a set of TGDs, and
outputs a database. A query rewriter is a function that takes
a CQ and a set of TGDs, and outputs a first-order query.

Definition 16 A class C ⊆ TGD of TGDs is polynomially
combined first-order rewritable if there are polynomial time
computable database and query rewriters fDB and fQ, re-
spectively, such that the following holds: for every database
D, set Σ ∈ C of TGDs, and CQ q, cert(q,D,Σ) = qΣ(DΣ)
with DΣ = fDB(D,Σ) and qΣ = fQ(q,Σ). We also say that
C is polynomially combined first-order rewritable targeting
existential positive queries (∃FO+) if qΣ is an ∃FO+ query.

For a fixed schema S, G1[S] is polynomially combined
first-order rewritable targeting ∃FO+ (Gottlob, Manna, and
Pieris 2014). This carries over to multi-head TGDs:

Theorem 17 For a fixed schema S, G[S] is polynomially
combined first-order rewritable targeting ∃FO+.

Interestingly, the above result can be obtained by exploit-
ing the machinery introduced in the previous section. In par-
ticular, Theorem 11, and the fact that every class of TGDs
that enjoys the PWP is polynomially combined first-order
rewritable targeting ∃FO+ (Gottlob et al. 2014), imply that:

Theorem 18 For a schema S of fixed arity, L[S] is polyno-
mially combined first-order rewritable targeting ∃FO+.

The above result, and the polynomial time reduction from
OQA(G[S]) to OQA(L[S′]) with ar(S) = ar(S′) provided
by Lemma 8, allow us to establish Theorem 17.

6 Conclusions
In this work, we closed a gap in the analysis of ontology-
based query answering for guarded TGDs in the case of fixed
schemas. In particular, we proved that the problem is NP-
complete, and polynomially combined first-order rewritable,
even if we consider multi-head guarded TGDs.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

453

Acknowledgments
Gottlob is a Royal Society Research Professor and acknowl-
edges support by the Royal Society for the present work in
the context of the project ”RAISON DATA” (project ref-
erence: RP/R1/201074). Manna has been partially sup-
ported by MISE under the project “S2BDW” (F/050389/01-
03/X32) - Horizon 2020 PON I&C2014-20 and by Re-
gione Calabria under the project “DLV LargeScale” (CUP
J28C17000220006) - POR Calabria 2014-20. Pieris was
supported by the EPSRC grant EP/S003800/1 “EQUID”.

References
Andréka, H.; van Benthem, J.; and Németi, I. 1998. Modal
languages and bounded fragments of predicate logic. J.
Philosophical Logic 27:217–274.
Arenas, M.; Gottlob, G.; and Pieris, A. 2018. Expres-
sive languages for querying the semantic web. ACM Trans.
Database Syst. 43(3):13:1–13:45.
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press.
Baget, J.-F.; Leclère, M.; Mugnier, M.-L.; and Salvat, E.
2011. On rules with existential variables: Walking the de-
cidability line. Artif. Intell. 175(9-10):1620–1654.
Bárány, V.; Benedikt, M.; and ten Cate, B. 2013. Rewriting
guarded negation queries. In MFCS, 98–110.
Benedikt, M. 2018. Personal Communication.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A family of logical knowledge
representation and query languages for new applications. In
LICS, 228–242.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the in-
finite chase: Query answering under expressive relational
constraints. J. Artif. Intell. Res. 48:115–174.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A gen-
eral Datalog-based framework for tractable query answering
over ontologies. J. Web Sem. 14:57–83.
Gottlob, G.; Kikot, S.; Kontchakov, R.; Podolskii, V. V.;
Schwentick, T.; and Zakharyaschev, M. 2014. The price of
query rewriting in ontology-based data access. Artif. Intell.
213:42–59.
Gottlob, G.; Manna, M.; and Pieris, A. 2014. Polynomial
combined rewritings for existential rules. In KR.
Gottlob, G.; Rudolph, S.; and Simkus, M. 2014. Expres-
siveness of guarded existential rule languages. In PODS,
27–38.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In IJCAI, 2070–2075.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

454

