
Datalog Rewritability and Data Complexity of ALCHOIF with Closed Predicates

Tomasz Gogacz1 , Sanja Lukumbuzya2 , Magdalena Ortiz2 , Mantas Šimkus2
1Institute of Informatics, University of Warsaw, Poland
2Institute of Logic and Computation, TU Wien, Austria

t.gogacz@mimuw.edu.pl, {lukumbuzya, ortiz}@kr.tuwien.ac.at, simkus@dbai.tuwien.ac.at

Abstract

We study the relative expressiveness of ontology-mediated
queries (OMQs) formulated in the expressive Description
Logic ALCHOIF extended with closed predicates. In par-
ticular, we present a polynomial-time translation from OMQs
into Datalog with negation under the stable model semantics,
the formalism that underlies Answer Set Programming. This
is a novel and non-trivial result: the considered OMQs are not
only non-monotonic but also feature a tricky combination of
nominals, inverse roles, and role functionality. We start with
atomic queries and then lift our approach to a large class of
first-order queries where quantification is “guarded” by closed
predicates. Our translation is based on a characterization of
the query answering problem via integer programming, and a
specially crafted program in Datalog with negation that finds
solutions to dynamically generated systems of integer inequal-
ities. As an important by-product of our translation, we get
that the query answering problem is co-NP-complete in data
complexity for the considered class of OMQs. Thus, answer-
ing these OMQs in the presence of closed predicates is not
harder than answering them in the standard setting. This is
not obvious as closed predicates are known to increase data
complexity for some existing ontology languages.

1 Introduction
Description Logics (DLs) are a prominent family of knowl-
edge representation languages suitable for capturing and rea-
soning about information with a complex structure. For
instance, DLs play a key role in Ontology-Based Data
Access (OBDA), a data integration approach where a DL-
based ontology in combination with a reasoner acts as a
mediator between the users and the possibly heterogeneous
data sources. A key reasoning task in OBDA is answer-
ing ontology-mediated queries (OMQs). An OMQ is a pair
(T , Q) that couples an ontology T (or a TBox) expressed in
some DL and a database query Q. Given a set A of facts (or
an ABox), answering (T , Q) requires computing the intersec-
tion of answers toQ over all structures (essentially, databases)
that contain A and satisfy the ontological axioms in T .

Most DLs are fragments of first-order logic, which leads to
the open-world assumption in OBDA and other applications
of DLs to data management. Intuitively, the open-world
assumption states that everything that is not forbidden is

possible. This sometimes rules out intuitive common-sense
inferences, and thus has spurred research efforts to combine
the open-world assumption with the closed-world assumption
that is made in the classical database setting. One of the
basic tools to achieve this in DLs are the so-called closed
predicates (Franconi, Ibáñez-Garcı́a, and Seylan 2011; Lutz,
Seylan, and Wolter 2013), which allow us to specify which
ontological predicates have extensions that are determined
solely by the data.

In this paper, we focus on an extension of the expressive
DL ALCHOIF with closed predicates. ALCHOIF is a
close relative of the W3C standard OWL 2 ontology language,
and it extends the basic DL ALC with role hierarchies, nomi-
nals, inverse roles, and role functionality. The combination of
the latter three constructors is known to be particularly tricky,
and their interaction causes NEXPTIME-hardness of some
of the basic reasoning problems like ontology satisfiability
(Tobies 2000). For comparison, this problem is in EXPTIME
if one of the three is omitted. The extension of ALCHOIF
with closed predicates is a very powerful language that al-
lows us to easily express many natural queries that cannot
be expressed in traditional query languages like first-order
logic or Datalog. One such example is determining, given
a database and a unary relation A, whether the number of
objects in A is odd. This can be expressed through a Boolean
OMQ (T ,⊥), where T = {A ≡ B1 t B2, B1 u B2 v
⊥, B1 v ∃r.B2, B2 v ∃r.B1, (func r), (func r−)} and A is
closed. Let a1, . . . , an be the elements in A. The axioms in
T force models to partition a1, . . . , an into two sets B1 and
B2. Further, every element in B1 has an r-arc to an element
in B2 and vice versa. Due to the functionality of r and r−,
each element has exactly one ingoing and one outgoing r-arc.
As A is a closed predicate, this forces the existence of a cycle
in models of T and A of the following form:

a1

B0

a2

B1

a3

B0

a4

B1

. . . an

B1

r r rr r r

r

Such a cycle exists if and only if n is even. Which means
that for odd n, the query is entailed. Other queries that
can be expressed using ALCHOIF ontologies with closed
predicates include comparing cardinalities of two database

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

434

relations, e.g., checking whether there are twice as many
elements in relation A than in relation B.

The main motivation behind this paper is to understand the
relative expressiveness of OMQs based on this DL, especially
compared to more standard database languages like various
extensions of Datalog. Our main result is a polynomial-time
translation that allows us to convert an ALCHOIF TBox
with closed predicates into a Datalog program with negation
under the stable model semantics. When data is considered,
this program can be used to answer any instance query. In
particular, given a TBox T and a set Σ of predicates that are
considered closed, we obtain in polynomial time a program
P T ,Σ such that the knowledge base K = (T ,Σ,A) and the
program P T ,Σ ∪ A have the same atomic consequences. We
thus establish that instance queries mediated byALCHOIF
ontologies can be rewritten into Datalog with stable nega-
tion. This result extends to a much larger class of safe-range
OMQs, which support first-order queries where quantification
is “guarded” by closed predicates.

An important consequence of our results is that the consid-
ered class of OMQs is co-NP-complete in data complexity,
which follows from the complexity of Datalog with negation
under the stable model semantics. This is a positive result, as
it shows that adding closed predicates to ALCHOIF does
not increase the data complexity. We note that this is not
obvious, as closed predicates are known to increase the data
complexity in some cases, e.g., for ontology languages based
on existential rules (Benedikt et al. 2016).

Rewritability of DLs into traditional database languages
has received significant attention. For lightweight DLs,
rewritability into FO queries has been studied extensively
and it underlies actual OBDA systems (Calvanese et al.
2007). For expressive DLs, the target language of the rewrit-
ings is usually a variant of Datalog (Bienvenu et al. 2014;
Gottlob and Schwentick 2012). For example, an exponential
rewriting for SHIQ into disjunctive Datalog was presented
in (Hustadt, Motik, and Sattler 2007), a polynomial-time
Datalog encoding of Horn-SHIQ was proposed in (Ortiz,
Rudolph, and Šimkus 2010) and (Ahmetaj, Ortiz, and Šimkus
2020) propose a polynomial-time translation for ALCHOI
with closed predicates. Our translation uses a very differ-
ent approach compared to other translations in the literature.
Inspired by works on finite satisfiability (Calvanese 1996;
Lutz, Sattler, and Tendera 2005; Pratt-Hartmann 2005), we
characterize models of ALCHOIF KBs with closed predi-
cates by means of integer programming. We then present a
Datalog program that performs ontology-mediated query an-
swering by computing solutions to a dynamically generated
system of inequalities.

The rest of the paper is structured as follows. Section 2 re-
views some basic notions in DLs. In Section 3, we present the
integer programming characterization ofALCHOIF satisfi-
ability with closed predicates. Based on this, Section 4 shows
how to construct a Datalog program with stable negation for
deciding this satisfiability problem. Finally, in Section 5 we
explain how this program can be augmented for answering
certain types of OMQs and we present our complexity results.

An extended version of this paper can be found at
https://dbai.tuwien.ac.at/staff/simkus/papers/kr20-data.pdf

2 Preliminaries
We assume countably infinite sets NC, NR, and NI of unary
predicate symbols (concept names), binary predicate sym-
bols (role names), and constants, respectively. Roles are
expressions of the form p and p−, where p ∈ NR. We let
N+

R be the set of all roles. With a slight abuse of notation,
we write r− to denote p− if r = p, and p if r = p−, for
p ∈ NR. The role r− is the inverse of r. Given a set R
of roles, R− denote the set {r− : r ∈ R}. ALCHOIF
concepts are defined according to the following syntax:
C := > | ⊥ | A | {a} | ¬C | C t C | C u C | ∀r.C | ∃r.C,
where A ∈ NC, r is a role, and a ∈ NI. Nominals are con-
cepts of the form {a}, where a ∈ NI. An ABox is a finite set
of assertions of the form A(a), ¬A(a), p(a, b) or ¬p(a, b),
where a, b ∈ NI, A ∈ NC, and p ∈ NR. An expression
C v D, where C and D are concepts, is a concept inclusion,
and an expression r v s, where r and s are roles, is a role
inclusion. A functionality assertion is an expression (func r),
where r is a role. A (TBox) axiom is a concept inclusion, a
role inclusion, or a functionality assertion, and a TBox is a
finite set of axioms. A knowledge base (with closed predi-
cates) (KB) is a tripleK = (T ,Σ,A), where T is a TBox,A
is an ABox, and Σ ⊆ NC ∪ NR is a set of closed predicates.
For a TBox, an ABox, or a KB X , we denote by NC(X),
NR(X) the set of concept and role names occurring in X , and
by N+

R (X) the set of roles occurring in X and their inverses.
An interpretation is a pair I = (∆I , ·I), where ∆I is a

non-empty set called the domain and ·I is the interpretation
function that assigns to each a ∈ NI a domain element aI ∈
∆I , each A ∈ NC a set AI ⊆ ∆I , and each r ∈ NR a
set rI ⊆ ∆I × ∆I . The extension of the interpretation
function to the remaining concepts and roles is defined in
the standard way (Baader et al. 2003). Note that, as every
predicate has an arity of at most two, interpretations can be
seen as a labeled directed graph, where each vertex represents
a domain element d and is labeled with the concept names
and nominals d participates in, and each edge between two
vertices d1 and d2 is labeled by roles and represents a pair
(d1, d2) in their extensions. A concept or a role inclusion
Q1 v Q2 is satisfied by an interpretation I if QI1 ⊆ QI2 .
A functionality assertion (func r) is satisfied by I if for all
c ∈ ∆I , (c, d1) ∈ rI and (c, d2) ∈ rI implies d1 = d2

and I satisfies an assertion Q(~a) if ~a ∈ QI . We note that
we make the Standard Name Assumption (SNA), which is
common when dealing with closed predicates and which
forces us to interpret every constant as itself, i.e., aI = a, for
all I and all constants a. We say that I satisfies a TBox T
(resp. ABoxA) if it satisfies all axioms in T (resp. assertions
in A). We say that I satisfies an ABox A under the closed
predicates Σ, in symbols I �Σ A, if I � A and ~a ∈ QI

implies Q(~a) ∈ A, for all Q ∈ Σ. We say that I satisfies a
KB K, in symbols I � K, if I � T and I �Σ A.

3 KB Satisfiability via Integer Programming
In this section, we devise a procedure that decides the sat-
isfiability of ALCHOIF KBs with closed predicates using
integer programming techniques. Our approach is closely
related to techniques in (Calvanese 1996; Lutz, Sattler, and

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

435

https://dbai.tuwien.ac.at/staff/simkus/papers/kr20-data.pdf

Tendera 2005; Pratt-Hartmann 2005) that reduce the finite
satisfiability problem to finding integer solutions to a system
of linear inequalities. We reuse large parts of the inequality
systems in (Gogacz et al. 2020), which (among other results)
shows that deciding whether a given ALCHOIF TBox has
a model in which some input predicates have finite exten-
sions can be characterized via integer programming. For this
paper we need to enable ABoxes and closed predicates: we
next show that we can correctly characterize the problem of
satisfiability of ALCHOIF KBs with closed predicates as
a system of linear inequalities together with some side con-
ditions. This characterization is the basis of our translation
from queries mediated by ALCHOIF TBoxes into Datalog
with negation under the stable model semantics.

We begin by introducing a couple of key notions. Let
N+

C = NC ∪ {>,⊥} ∪ {{c} : c ∈ NI} be the set of basic
concepts and let N+

C (K) denote the concepts in N+
C that occur

in a KBK. A tile τ forK is a description of a domain element
together with its relevant neighborhood. Intuitively, tiles tell
us which basic concepts domain elements participate in as
well as the kind of neighbors they have in a model of K.
A mosaic for K is a function N that assigns to each tile a
multiplicity. Mosaics satisfy certain conditions that ensure
that it is possible to build a model of K by taking, for each
tile τ , N(τ) domain elements that fit the description given
by τ . Deciding satisfiability of K thus amounts to deciding
the existence of a mosaic for K.

To simplify our presentation, we make a couple of assump-
tions (w.l.o.g) regarding the kind of knowledge bases we
consider. First, we assume that every concept/role name oc-
curring in the knowledge base also occurs in its TBox. We
also assume that TBoxes are given in normal form in which
all inclusions are of the following types:

B1 u · · · uBk−1 v Bk t · · · tBm,
B1 v ∃r.B2, B1 v ∀r.B2, r v s, (func r),

where {B1, . . . , Bm} ⊆ N+
C , k > 1, m ≥ k, and {r, s} ⊆

N+
R . Moreover, TBoxes are assumed to be closed under role

inclusions as follows:

• p v p ∈ T , for each p ∈ NR occurring in T
• if r v s ∈ T , then r− v s− ∈ T
• if r1 v r2 ∈ T and r2 v r3 ∈ T , then r1 v r3 ∈ T
• if r v s ∈ T and (func s) ∈ T , then (func r) ∈ T .

We next formally define the notions of tiles and mosaics.

Definition 1. Given an ALCHOIF knowledge base K =
(T ,Σ,A), a type for K is any set T such that

1. T ⊆ N+
C (K);

2. > ∈ T and ⊥ 6∈ T ;
3. for all a, b ∈ NI(K), if {a}, {b} ∈ T , then a = b.

We denote the set of all types forK by Types(K). A type lists
the basic concepts that a domain element participates in. The
intuition behind the first two conditions is obvious and the
third condition arises due to the SNA.

Definition 2. Given an ALCHOIF KB K = (T ,Σ,A), a
tile for K is a tuple τ = (T, ρ), where T ∈ Types(K) and ρ
is a set of pairs (R, T ′), where R ⊆ N+

R (K), T ′ ∈ Types(K)
and the following conditions are satisfied:

1. |ρ| ≤ |T |
2. If B1 u · · · u Bk−1 v Bk t · · · t Bm ∈ T and
{B1, . . . , Bk−1} ⊆ T , then {Bk, . . . , Bm} ∩ T 6= ∅

3. If A v ∃r.B ∈ T and A ∈ T , then there is (R, T ′) ∈ ρ
such that r ∈ R and B ∈ T ′

4. For all (R, T ′) ∈ ρ, the following hold:
(a) If A v ∀r.B ∈ T , A ∈ T and r ∈ R, then B ∈ T ′
(b) If A v ∀r.B ∈ T , A ∈ T ′ and r− ∈ R, then B ∈ T
(c) If r v s ∈ T and r ∈ R, then s ∈ R

5. If (func r) ∈ T , then |{(R, T ′) ∈ ρ : r ∈ R}| ≤ 1

6. If A(b) ∈ A and {b} ∈ T , then A ∈ T
7. If ¬A(b) ∈ A and {b} ∈ T , then A 6∈ T
8. For all (R, T ′) ∈ ρ, the following hold:

(a) If p(a, b) ∈ A, {p v r, (func r)} ⊆ T , {a} ∈ T and
r ∈ R, then {b} ∈ T ′

(b) If p(a, b) ∈ A, {p v r, (func r−)} ⊆ T , {b} ∈ T ,
and r− ∈ R, then {a} ∈ T ′

(c) If ¬p(a, b) ∈ A, r v p ∈ T , {a} ∈ T , and r ∈ R,
then {b} 6∈ T ′

(d) If ¬p(a, b) ∈ A, r v p− ∈ T , {b} ∈ T , and r ∈ R,
then {a} 6∈ T ′

9. If A ∈ Σ∩NC and A ∈ T , then there exists c ∈ NI such
that {c} ∈ T and A(c) ∈ A

10. If r ∈ Σ ∩ NR, then for all (R, T ′) ∈ ρ with r ∈ R,
there exist c, d ∈ NI such that {c} ∈ T , {d} ∈ T ′ and
r(c, d) ∈ A.

A tile (T, ρ) describes a domain element d that participates
in the basic concepts in T and that, for each (R, T ′) ∈ ρ, has
an arc labeled by R to a domain element that participates in
the basic concepts given by T ′. It is crucial to note that, in
general, ρ does not describe all the connections that d may
have in a model of K, i.e., in addition to those described
by ρ, d can have further connections. This kind of encoding
allows us to keep the number of different tiles polynomial
in the size of the Abox A, and their size independent of A,
which plays an important role in defining a polynomial and
data-independent Datalog translation. We briefly explain the
intuitions behind the conditions. Conditions 1-5 are inherited
from (Gogacz et al. 2020) and ensure that the description of
d is consistent with the statements in T , from the perspective
of d. Condition 2 ensures the satisfaction of axioms of the
type B1 u · · · u Bk−1 v Bk t · · · t Bm ∈ T , condition 3
guarantees that d has a witness for every axiom ∃R.B ∈ T ,
conditions 4 (a)-(c) ensure that d and its neighbors respect
axioms of the type A v ∀r.B and r v s, and condition 5
ensures that the functionality assertions in T are not violated.
We further add the conditions that ensure that the description
of d is compatible with the assertions in A (conditions 6-8),
and those that ensure that the closed predicates are respected
(conditions 9-10).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

436

We next define mosaics for which are functions that tell
us, for each tile τ , how many instances of τ we need to
build a model. Since some tiles might need to be instantiated
infinitely many times we introduce a new value ℵ0 that is
greater than any natural number and we extend the operations
· and + as follows: ℵ0 · ℵ0 = ℵ0 +ℵ0 = ℵ0 + 0 = 0 +ℵ0 =
ℵ0 +n = n+ℵ0 = ℵ0 ·n = n ·ℵ0 = ℵ0, for all n ∈ N\{0},
and 0 · ℵ0 = ℵ0 · 0 = 0. We let N∗ = N ∪ {ℵ0}.
Definition 3. Let K = (T ,Σ,A) be an ALCHOIF KB. A
mosaic for K is a function N : Tiles(K)→ N∗ such that:

M1. For every {c} ∈ N+
C (K) :

∑
(T,ρ)∈Tiles(K),
{c}∈T

N((T, ρ)) = 1

M2. The following inequality is satisfied:
∑

τ∈Tiles(K)

N(τ) ≥ 1

M3. For every pair T, T ′ ∈ Types(K) and every R ⊆
N+

R (K) with r ∈ R and (func r−) ∈ T , the follow-
ing holds:∑

(T,ρ)∈Tiles(K),
(R,T ′)∈ρ

N((T, ρ)) ≤
∑

(T ′,ρ′)∈Tiles(K),

(R−,T)∈ρ′

N((T ′, ρ′))

M4. For all (T, ρ) ∈ Tiles(K) and (R, T ′) ∈ ρ the follow-
ing holds: if N((T, ρ)) > 0, then there exists ρ′ such
that (T ′, ρ′) ∈ Tiles(K) and N((T ′, ρ′)) > 0.

M5. For all {a}, {b} ∈ N+
C (K) and all A,B ∈ NC(K), if

there exist p, r ∈ N+
R (K) for which any of the follow-

ing conditions hold:
(a) p(a, b) ∈ A, p v r ∈ T and A v ∀r.B ∈ T ,
(b) p(b, a) ∈ A, p v r− ∈ T and A v ∀r.B ∈ T ,
(c) p(a, b) ∈ A, p v r ∈ T and A v ∃r.B ∈ T and

(func r) ∈ T , or
(d) p(b, a) ∈ A, p v r− ∈ T and A v ∃r.B ∈ T and

(func r) ∈ T ,
we have that the following implication holds:∑

(T,ρ)∈Tiles(K),
{a}∈T,A∈T

N((T, ρ)) > 0 implies
∑

(T ′,ρ′)∈Tiles(K),
{b}∈T ′,B∈T ′

N((T ′, ρ′)) > 0

We can see a mosaic N for K as a recipe for building a
model of K by instantiating tiles according to the multiplici-
ties given by N . The first condition tells us that in a model of
K, for all constants c occurring in K there can be exactly one
domain element that participates {c} – namely c itself. The
second condition makes sure that at least one tile is instanti-
ated as we do not allow interpretations with empty domains.
The condition M3 ensures that we have enough domain el-
ements to satisfy the functionality assertions in T . More
precisely, assume we are given types T, T ′ and R ⊆ N+

R (K),
where a role r whose inverse is functional occurs in R. Let n
be the number of domain elements in a model ofK that partic-
ipate in basic concepts in T and have an outgoing arc labeled
by R to some neighbor of type T ′. Since r− is functional,
each domain element can “accept” at most one incoming arc

labeled by R, or equivalently, has at most one outgoing arc
labeled by R−. Thus, to build a model of K, there must be n
or more elements of type T ′ that have an outgoing arc to an
element of type T that is labeled by R−. The condition M4
says that if we obtain a domain element d by instantiating a
tile (T, ρ) and ρ asserts the existence of some neighbors of d,
we can also instantiate tiles to provide suitable neighbors for
d. Condition M5 relates to the following situation. Assume
we have p(a, b) ∈ A asserting that, in a model of K, a has
as a p-neighbor the constant b and assume a participates in
a concept name A. Now assume there are axioms in T that
allows us to infer that all p-neighbors of a must participate in
a concept name B. We can conclude that b must participate
in B. Constant a can “send” such a message to b either via
universal axioms in T or via existential axioms and func-
tionality assertions in T . Conditions M5 (a)-(d) represent
different ways a can communicate information to b.

The following result establishes the connection between
the existence of mosaics and the satisfiability ofALCHOIF
KBs with closed predicates.
Theorem 1. Let K = (T ,Σ,A) be an ALCHOIF KB. K
is satisfiable if and only if there exists a mosaic for K and A
satisfies the following conditions:
1. for all r ∈ Σ ∩ NR and s v r ∈ T , if s(a, b) ∈ A, then
r(a, b) ∈ A, and

2. for all r ∈ N+
R (A) with (func r) ∈ T and all a ∈ NI(A),

the set {b : p(a, b) ∈ A, p v r ∈ T } ∪ {b : p(b, a) ∈
A, p− v r ∈ T } has at most 1 element.

Intuitively, the two conditions in Theorem 1 ensure that A
itself respects the closed predicates and functionality asser-
tions. The first condition states that for each role r ∈ Σ, if
p(a, b) ∈ A and p v r ∈ T , then also r(a, b) ∈ A. If this is
not the case, every interpretation satisfying p v r violates the
closed predicates and as such K does not have a model. The
second condition checks for each constant a in A and each
functional role r, whether A asserts the existence of more
than one r-neighbor of a. If that is the case, then K also does
not have a model. Thus, deciding whether K is satisfiable
amounts to checking whetherA satisfies the given conditions
and whether there exists a mosaic for K. To decide the latter,
we build a system of linear inequalities with implications
whose solutions over N∗ define mosaics for K.

Formally, a system of linear inequalities is a pair (V, E),
where V is a set of variables and E is a set of inequalities of
the form a1 ·x1 + · · ·+an ·xn+ c ≤ b1 · y1 + · · ·+ bm · ym,
where a1, . . . , an, b1, . . . , bm are positive integers, c is a pos-
sibly negative integer, and x1, . . . , xn, y1, . . . , ym ∈ V . For
our purposes, we consider enriched systems of linear in-
equalities that are tuples (V, E , I), where (V, E) is a sys-
tem of linear inequalities and I is the set of implications
of the form y1 + · · · + ym > 0 ⇒ x1 + · · · + xn > 0,
x1, . . . , xn, y1, . . . , ym ∈ V . A solution to a system of linear
inequalities (V, E) is a function S : V → N (or in our case
N∗) such that all inequalities are satisfied. Further, S is a
solution to an enriched system of linear inequalities (V, E , I)
if it additionally satisfies all the implications in I .

Obtaining an enriched system of linear inequalities for a
KB K is rather straightforward. We associate a variable xτ

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

437

to every tile τ ∈ Tiles(K) and replace every occurrence of
N(τ) in the inequalities and implications in Def. 3 by xτ .
We denote the obtained system by SK. It is easy to see that
solutions of SK over N∗ correspond to mosaics for K.

4 The Translation
We briefly introduce Datalog with negation under the sta-
ble model semantics (Gelfond and Lifschitz 1988). A
(Datalog¬) program is a set of rules of the form r =
h ← b1, . . . , bn,not bn+1, . . . , not bm, where n,m ≥ 0,
h, b1, . . . , bm are function-free first-order atoms (referred to
as atoms), and all variables in r occur in some b1, . . . , bn. We
let head(r) = h, body+(r) = {b1, . . . , bn} and body−(p) =
{bn+1, . . . , bm}. Constraints are rules of the form p ←
α,not p (abbreviated as ← α), where p is a fresh propo-
sitional atom. We also assume a built-in predicate =i that
compares two tuples of length i > 0 in the obvious way.
When i is clear from the context, we write = instead of =i.
Note that these predicates can easily be axiomatized using
(Datalog¬) rules. A set I of ground (variable-free) atoms
is a model of a ground not-free program, if for every rule
h← b1, . . . , bn, b1, . . . , bn ∈ I implies h ∈ I . A reduct of a
program P w.r.t. I is given as PI = {head(r)← body+(r) :

body−(r)∩ I = ∅, r ∈ P ′}, where P ′ is the set of all ground
instances of P over the constants in P . We say that I is a
stable model (or an answer set) of P if I is a ⊆-minimal
model of PI . A Datalog¬ query is a pair (P, Q), where P
is a program and Q is a distinguished predicate. A tuple of
constants ~a is a certain answer to the query (P, Q) over a set
of atoms I if Q(~a) ∈ J , for each answer set J of P ∪ I .

For each predicate Q occurring in some TBox, we assume
a predicate Q that does not occur in any TBox. For an ABox
A, we denote by Â the set of atoms obtained from A by
replacing all assertions of the form ¬Q(~a) by Q(~a). This
technical trick is commonly used to accommodate negative
assertions as Datalog operates on plain atoms. Note that if A
contains no negative assertions, A and Â coincide.

The goal of this section is to show that, given a TBox T
and a set of predicates Σ, we can construct a Datalog¬ pro-
gram PT ,Σsat that has the following property: for all ABoxes
A over the signature of T , PT ,Σsat ∪ Â has an answer set
iff (T ,Σ,A) is satisfiable. This program has two important
properties: (i) it is polynomial in the size of T and Σ and
(ii) it is completely independent of the data. Our translation
is based on the characterization of the satisfiability problem
via existence of mosaics as described in the previous section.
Relying on Theorem 1, we define the program PT ,Σsat consist-
ing of two components PT ,Σsys and PT ,Σsol that communicate
through a shared part of the signature. For an input ABox A,
the program PT ,Σsys ∪ Â checks whetherA respects the closed
predicates and functionality assertions as specified by condi-
tions 1. and 2. of Theorem 1, and it computes the relational
representation of S(T ,Σ,A). The program PT ,Σsol together with
such a representation of S(T ,Σ,A) checks whether S(T ,Σ,A)

has solutions over N∗. Thus, the two components together
check whether (T ,Σ,A) is satisfiable, for an input ABox A.
This is depicted in Fig. 1. It is worth noting that the PT ,Σsat

depends on Σ and T only in terms of the arities of the shared
predicates and it can otherwise be used to solve arbitrary
enriched systems of linear inequalities, as long as they are
represented using the signature described below.

We now give a brief overview of the signature that acts
as an interface between the two components. Assuming that
every variable, inequality, and implication in the system has
an identifier (ID), we define the following predicates for
encoding enriched systems of linear inequalities:
• A unary relation Cst storing constants, including 0 and 1.
• A binary relation LEQ defining a linear order over the

constants in Cst, where 0 is the least constant w.r.t. LEQ.
• Relations Var, Iq, and Im storing IDs of variables, inequali-

ties, and implications, respectively.
• Relations IqL1 and IqR1 storing IDs of inequalities whose

LHS and RHS are equal to 1, respectively.
• Relations IqL and IqR storing a pair (~q,~v), for each in-

equality ID ~q and a variable ID ~v for which the variable
identified by ~v occurs on the left-hand side (LHS) (resp.
right-hand side (RHS)) of the inequality identified by ~q.

• Relations ImL and ImR storing a pair (~m,~v), for each im-
plication ID ~m and a variable ID ~v for which the variable
identified by ~v occurs on the LHS (resp. RHS) of the
implication identified by ~m.

To ease the presentation, here we focus on the intuition behind
the predicates, omitting technicalities like, e.g., the arities.
These will become clear in the remainder of the paper. Given
an enriched system of linear inequalities S, we use Rel(S)
to denote the relational encoding of this system.

4.1 Generating Linear Inequalities
We next show that given a TBox T and a set Σ ⊆ NC ∪ NR,
we can obtain in polynomial time the program PT ,Σsys such
that, for every ABox A over the signature of T , PT ,Σsys ∪ Â
has an answer set if and only if A fulfills conditions 1 and
2 in Theorem 1. More importantly, answer sets of this pro-
gram correspond to Rel(S(T ,Σ,A)), differing only in terms of
which IDs they use for the variables, inequalities, and implica-
tions in S(T ,Σ,A). We now sketch the construction of PT ,Σsys .

The main task of PT ,Σsys is to generate a relational rep-
resentation of S(T ,Σ,A), for a fixed TBox T and a set of
predicates Σ, and any input ABox A. As the variables in
S(T ,Σ,A) directly correspond to the tiles for (T ,Σ,A), we
first generate the tiles and then use them to build the desired
enriched inequality system. Relevant dependencies among
the predicates used to define PT ,Σsys are depicted in Figure 2
This program consists of four main parts that given an input
ABox A do the following:
1. Generate all possible candidate tiles for (T ,Σ,A).
2. Eliminate the candidates that do not satisfy the conditions

in Definition 2 leaving behind only proper tiles – this are
the variables of S(T ,Σ,A).

3. Generate the inequalities and implications of SK.
4. Check whether A respects the closed predicates and func-

tionality constraints.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

438

PT ,Σsys PT ,Σsol sat?

PT ,Σsat
(T ,Σ,A) is unsatisfiable

mosaics for (T ,Σ,A), i.e, (T ,Σ,A) is satisfiableÂ
Rel(S(T ,Σ,A)) yes

no

Figure 1: PΣ,T
sat and its components.

Let K = (T ,Σ,A). The first step is to define the rules
that compute the relation CandT, storing candidate tiles for
K. Like a tile, a candidate tile for K consists of a type T
for K and a set of pairs (R, T ′), where T ′ is a type for K
and R ⊆ N+

R (K) (hereinafter referred to as role types for K).
However, the difference between the tiles and the candidate
tiles is that the latter need not satisfy the conditions in Def. 2.

As types and role types are integral components of tiles, we
first define the rules that compute all types and role types for
K. Recall that we have to consider an exponential number of
different types and role types. As the number of the role types
for K does not depend on the ABox, they can be encoded
as usual. This means that we fix an enumeration r1, . . . , rl
of the roles in N+

R (T) and associate to every role type R a
binary string of length l that acts as an identifier for R and
indicates which roles occur in R. These strings are stored in
the relation RType and are computed using the rule

RType(x1, . . . , xl)← Bin(x1), . . . ,Bin(xl),

where Bin is a unary relation containing constants 0 and 1.
Encoding types is slightly trickier, as the number of types
also depends on the ABox. Thus, the previous approach
is not applicable if we wish to keep our translation data-
independent, as the length of the encoding would grow with
the data. We overcome this issue as follows. Similarly to
before, we fix an enumeration B1, . . . , Bk of the concept
names in NC(T). We assign to every type T a string of
length k + 1, where the first k positions are 0 or 1 indicating
which concept names occur in T . Recall that there can be
at most one nominal in T . The last position in the string
indicates which (if any) nominal occurs in T . This position
is either a constant from the KB, denoting a specific nominal,
or a special constant ∗, denoting the lack of nominals in
T . Thus, the relation Type contains strings (b1, . . . , bk, a)
encoding the type T = {Bi : bi = 1, 1 ≤ i ≤ k} ∪ {{a}}
if a 6= ∗, or T = {Bi : bi = 1, 1 ≤ i ≤ k}, otherwise.
Moreover, each type is encoded by exactly one string in Type.
These are computed using the rule:

Type(x1, . . . , xk+1)← Bin(x1), . . . ,Bin(xk),Adom(xk+1),

where Adom is a unary relation that stores ∗ and the constants
occurring in the KB, which can be extracted using a fixed
number of rules. Adom together with the constants 0 and 1
makes up the relation Cst. Finally, we use Type and RType
to compute the relation CandT that stores candidate tiles for
K. Let n = |T |. Each candidate tile (T, ρ) is identified by
a string of length k + 1 + n(l + k + 1) such that the first
k + 1 positions identify T , and each l + k + 1 positions
after that identify a pair of a role type and a type in ρ. More
precisely, CandT stores tuples (~p, ~r1, ~p1 . . . , ~rn, ~pn), where

~p, ~p1, . . . , ~pn are in the relation Type and ~r1, . . . , ~rn are in
RType. The following is the rule for computing CandT:

CandT(~x, ~y1, ~x1, . . . , ~yn, ~xn)← Type(~x),

RType(~y1), Type(~x1), . . . ,RType(~yn), Type(~xn)

It should be noted that according to Def. 2, a (candidate)
tile (T, ρ) is not required to have exactly n elements in ρ.
This makes the encoding via strings of fixed-length a lit-
tle tricky. We overcome this issue by allowing duplicates
in ρ and thus padding the candidate tiles to the desired
size. However, ρ is a set and so duplicates are ignored.
This means that, e.g., (~p, ~r1, ~p1, ~r1, ~p1, . . . , ~r1, ~p1, ~r2, ~p2)
and (~p, ~r1, ~p1, ~r2, ~p2, . . . ~r2, ~p2), where ~p, ~p1, ~p2 are in Type
and ~r1, ~r2 are in RType, encode the same candidate tile. More-
over, as the order in which the elements occur in ρ is also
irrelevant we get that, e.g., (~p, ~r1, ~p1, ~r2, ~p2, . . . , ~rn, ~pn) and
(~p, ~r2, ~p2, ~r1, ~p1, . . . , ~rn, ~pn), for ~p, ~p1, . . . , ~pn ∈ Type and
~r1, . . . , ~rn are in RType also encode the same candidate tile.
We deal with these duplicates in the next step.

In the second step of our construction, we filter out the
tuples in CandT that do not define proper tiles for K. To
this end, we go through all the conditions in Def. 2 and for
each one we add the rules that “invalidate” the candidate
tiles that do not satisfy this condition, i.e., they store the
tuple representing this candidate tile in the relation InvTile.
Defining these rules is tedious but not hard and is there-
fore delegated to the long version of this paper. As a small
demonstration, we show here the rules that correspond to
the second condition in Def. 2 (note that the first condition
is satisfied by construction). For every concept inclusion
Bi1 u · · · uBim−1

v Bim t · · · tBit we have the following:

InvTile(x1, . . . , xk, ~y)← CandT(x1, . . . , xk, ~y),

xi1 = 1, . . . , xim−1 = 1, xim 6= 1, . . . , xit 6= 1,

As promised, we also address the issue that two different IDs
in CandT may refer to the same candidate tile. To this end, we
guess a linear order over the constants Cst using a binary pred-
icate LEQ, where 0 is the least constant. We use the standard
approach to lift this linear order to strings of length (l+k+1)
(see e.g., (Dantsin et al. 2001)), using the 2(l + k + 1)-ary
relation LEQ(l+k+1). Let τ = (T, ρ) be a candidate tile. The
only valid encoding of τ is a string (~p, ~r1, ~p1, . . . , ~rn, ~pn),
where ~p, ~p1, . . . , ~pn are in Type, ~r1, . . . , ~rn are in RType,
(~ri, ~pi, ~rj , ~pj) is in LEQl+k+1, and if (~ri, ~pi) 6= (~0, ∗), then
(~ri, ~pi) 6= (~rj , ~pj), for all 1 ≤ i, j ≤ n. All other strings
encoding τ are stored using InvTile and the following rules:
InvTile(~z)← CandT(~z), ~yi = ~yj , ~xi = ~xj , ~yi 6= (0, . . . , 0),

~xi 6= (0, . . . , 0, ∗),
InvTile(~z)← CandT(~z),not LEQ(l+k+1)(~yi, ~xi, ~yj , ~xj),

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

439

for each 1 ≤ i < j ≤ n, where ~z = (~x, ~y1, ~x1, . . . , ~yn, ~xn),
where x, ~x1, . . . , ~xn are vectors of length k + 1 and
~y1, . . . , ~yn are vectors of length l.

To conclude the second step, we add the rule to compute
the proper tiles for K and store them in the relation Tile:

Tile(~x)← CandT(~x),not InvTile(~x).

Thus, for every candidate tile satisfying the conditions in
Def. 2, Tile contains exactly one string encoding it.

We now define the rules that build SK. As each tile rep-
resents a variable in the system, we store tiles for K in the
relation Var by adding the rule

Var(~x)← Tile(~x).

Next, we compute the relations that encode the inequali-
ties and implications in SK. We assign a unique ID to each
inequality and each implication in SK, following the conven-
tion described in Table 1, and we store them in relations Iq
and ImL, respectively. Once we agree on the IDs, the rules
that compute Iq and Im are straightforward. For demonstra-
tion, consider the condition M1 in Def 3. We treat each
equation in M1 as two inequalities and we add the rules

Iq(x,~0)← Adom(x), x 6= ∗ Iq(~0, x)← Adom(x), x 6= ∗,

that store, for each nominal {c}, tuples (c,~0) and (~0, c) in
Iq identifying the inequalities

∑
(T,ρ)∈Tiles(K),
{c}∈T

N((T, ρ)) ≤ 1

and 1 ≤
∑

(T,ρ)∈Tiles(K),
{c}∈T

N((T, ρ)), respectively.

Finally, we compute the relations IqL, IqR, IqL1, IqR1, Im,
and ImR. We again demonstrate our approach on M1. On the
LHS of the inequality identified by (c,~0) and the RHS of the
inequality identified by (~0, c), we have all the variables that
correspond to tiles (T, ρ) for which {c} ∈ T . Thus, we add:

IqL(x,~0, ~x, c, ~y)← Iq(x,~0),Adom(x), x 6= ∗,Var(~x, c, ~y),

IqR(~0, x, ~x, c, ~y)← Iq(x,~0),Adom(x), x 6= ∗,Var(~x, c, ~y),

where ~x has length k.
The RHS of (c,~0) (resp. LHS of (~0, c)) is equal to 1. We

encode this using the following:

IqR1(x,~0)← Iq(x,~0),Adom(x), x 6= ∗.

IqL1(~0, x)← Iq(~0, x),Adom(x), x 6= ∗.
The remainder of the inequalities and implications are en-
coded in a similar way.

We complete our construction of PT ,Σsys by adding the rules
that ensure that A respects the closed predicates and func-
tionality restrictions. This is achieved via constraints (i.e.,
rules with empty bodies) and is straightforward.

4.2 Solving Linear Inequalities
We next discuss the construction of the program PT ,Σsol that,
given an enriched system of linear inequalities S encoded
using the previously-described signature, decides whether
there exists a solution over N∗ to S. Note that this program

Type CandT Tile

InvTile

Var

Iq

Im

IqL1/R1

IqL/R

ImL/R

RType

Figure 2: Partial dependency graph of PT ,Σ
sat (negation represented

via dashed arcs).

depends on T and Σ only in terms of the arity of the predi-
cates that are shared with PT ,Σsys and it can handle arbitrary
enriched systems, as long as they are encoded using the given
signature. If this program is run on a system generated by
PT ,Σsys ∪ Â, it decides the existence of a mosaic for (T ,Σ,A).

We recall a well-known result in integer programming (Pa-
padimitriou 1981) that states that the existence of a solution
over N implies the existence of a solution over N in which
variables are assigned values that are at most exponential
in the size of the system. This result can be generalized to
solutions over N∗ (cf. Lemma 18 in (Pratt-Hartmann 2005))
and it also holds for enriched systems of linear inequalities.
Theorem 2. Let (V, E , I) be a finite enriched system of linear
inequalities in which all constants and coefficients are in
{0,±1, . . . ,±a}. If (V, E , I) has a solution over N∗, then
it also has a solution over N∗ where all finite values are
bounded by (|V |+ |I|+ |E|) · ((|E|+ |I|) · a)2(|E|+|I|)+1.

Proof sketch. To decide whether an enriched system of linear
inequalities (V, E , I) has a solution over N∗, we construct a
set of (ordinary) linear inequality systems and check whether
at least one of them has a solution over N∗. Each system
in this set is of the form (V, E ∪ Ê), where Ê is obtained by
adding to E either y1 + · · ·+ ym ≤ 0 or x1 + · · ·+ xn > 0,
for each implication y1 + · · · + ym > 0 =⇒ x1 + · · · +
xn > 0 in I . Thus, to solve these systems it is enough to
consider the solutions whose finite values are bounded by
(|V |+ |Ê ∪E|) ·((|E ∪Ê|) ·a)2(|E∪Ê|)+1 (Papadimitriou 1981).
The result of the theorem follows from |Ê | = |I|.

For a given system Rel(S), let d be the number of con-
stants in Cst and let the arity of Var, Iq, and Im be lv, le and li,
respectively. Then, S has at most dlv variables, at most dle in-
equalities and at most dli implications. Let l = (lv + le + li).
In view of Theorem 2, for deciding whether S has a solution
it is sufficient to consider only those solutions whose finite
values do not exceed 2d

2l

. The maximum finite value obtain-
able by adding up the variables in the system is thus bounded
by 2d

3l

. These values can be encoded as binary strings of
length d3l, but this would make the translation exponential
and also dependent on the number of constants in the data,
which goes against our goal of having a polynomial, data-
independent translation. We overcome this challenge in the
following way: instead of having strings of length d3l, we
encode the addresses of these d3l bits as a string of length
3l over the constants in Cst. We then encode the values of
the variables using a lv + 3l + 1-ary predicate Val, with the
following meaning: (~x, ~z, b) in the relation Val denotes that

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

440

Cond. in Def 3 Factors IDs

M1 {c} ∈ N+
C (K) (c,~0) and (~0, c),where ~0 is a 0-vector of length 2k + l + 1.

M2 − (~0), where ~0 is a 0-vector of length 2(k + 1) + l.

M3 T, T ′ ∈ Types(K) and R ⊆ N+
R (K) (t, t′, r), where t, t′ identify T and T ′, respectively, and r identifies R.

M4 τ = (T, ρ) ∈ Tiles(K) and (R, T ′) ∈ ρ (t, r, t′), where t is the ID of τ , r identifies R, and t′ identifies T ′.

M5 {a}, {b} ∈ N+
C (K) and Bi, Bj ∈ NC(K) (a, b,~b,~b′,~0), where ~b (resp. ~b′) is of length k s.t. the i-th (resp. j-th)

position is 1 and the rest are 0, and~0 is a 0-vector of length n(k+1+l)+l.

Table 1: Identifiers of inequalities and implications of SK.

the bit encoded by the ~z in the value of the variable encoded
by ~x has the value b, where b is either 0 or 1.

We are ready to present our construction. The program
PT ,Σsol guesses the value of each variable and checks whether
the guess is a valid solution to the system. The guessing part
is rather straightforward. In the remainder of this section,
we write Csti(x1, . . . , xi) to abbreviate Cst(x1), . . .Cst(xi),
for i ≥ 1. We begin by adding the rules for guessing which
variables are set to infinity:

Fin(~x)← Var(~x),not Inf(~x) Inf(~x)← Var(~x),not Fin(~x)

If a variable is not set to infinity, we guess its value bit by bit
using the following rules:

Val(~x, ~z ′, ~z, 0)← Var(~x), Fin(~x),Cstl(~z ′),Cst2l(~z),

~z ′ 6= (0, . . . , 0)

Val(~x, ~z, 0)← Var(~x), Fin(~x),Cst3l(~z),not Val(~x, ~z, 1)

Val(~x, ~z, 1)← Var(~x), Fin(~x),Cst3l(~z),not Val(~x, ~z, 0)

As the variables take the values bounded by 2d
2l

, we only
need the first d2l bits to encode them. The remainder of
the dl bits have their value set to 0 and are reserved for
accommodating addition. The first rule thus sets the value
of the last dl bits to 0. The other two rules freely guess the
values of the remaining bits.

We now move to the checking part of PT ,Σsol . We use the
le-ary predicate Sat to store which inequalities are satisfied
by our guess. Note that if a variable that is set to infinity
occurs on the RHS of some inequality, that inequality is
automatically satisfied. Thus, we add the following rule:

Sat(~y)← Var(~x), Iq(~y), IqR(~y, ~x), Inf(~x)

Further, we mark which inequalities have occurrences of
variables that are set to infinity using the predicate InfIq:

InfIq(~y)← Iq(~y),Var(~x), Inf(~x), IqQ(~y, ~x),

where Q ∈ {L,R}. We store the remaining inequalities in
the relation FinIq computed as:

FinIq(~y)← Iq(~y),not InfIq(~y).

To check the satisfaction of the inequalities in which only the
variables with finite values occur we do the following. For
each such inequality, we compute the value on its LHS (resp.
RHS) incrementally, by iterating through the variables and at

each iteration storing the sum of all the variables considered
so far that occur on the LHS (resp. RHS). To this end, we
define a linear order over the variables. We use the linear
order from the relation LEQ and we lift it to strings over
Cst of length at most 3l. We further extract the relations
Firsti, Lasti,Succi, 1 ≤ i ≤ 3l, that store the least string of
length i, the greatest string of length i, and the successor
relation on the strings of length i, respectively. Finally, not
every string over Cst represents a variable in S . Thus, we use
the linear order above to define a successor relation on the
variables in the 2lv-ary relation SuccV. Relations FirstV and
LastV store, respectively, the first and the last variable with
respect to this successor relation.

We store the intermediate results using a (le+ lv + 3l+ 1)-
ary predicate UptoL. Intuitively, (~q,~v, ~p, b) is in UptoL if, for
the LHS of inequality ~q, the ~p-th bit in the sum of variables
up to ~v (including ~v) has the value b. We do this until we
reach the last variable. Next, we add the facts and rules that
define bit-by-bit addition of binary numbers. To this end, we
use a 5-ary relation Add, where a tuple (b, b′, b′′, c, r) in Add
denotes that the result of adding bits b, b′, and b′′ is r with
the carry c. As these rules are standard, we omit them here.
Further, we use the (le + lv + 3l + 1)-ary predicate CarryL

to mark relevant carry bits. A tuple (~q,~v, ~p, c) is in CarryL if
when adding up the bit at the position ~p of the variable ~x and
the result so far, we need to take into account a a bit with the
value c that was carried over from the previous computation.

We are now ready to compute LHS of the inequalities
(RHS defined analogously) and store our results using the
le + 3l + 1-ary predicate LHS. To deal with the case when
we know that the LHS is equal to 1, we have:

LHS(~y, ~z, 1)← FinIq(~y), IqL1(~y), First3l(~z)

LHS(~y, ~z, 0)← FinIq(~y), IqL1(~y),Cst3l(~z),not First3l(~z)

We then add the remaining rules:

UptoL(~y, ~x, ~z, x)← FinIq(~y), FirstV(~x),Val(~x, ~z, x),

not IqL1(~y)

CarryL(~y, ~x, ~z, 0)← FinIq(~y), FirstV(~x),Cst3l(~z)

CarryL(~y, ~x, ~z, 0)← FinIq(~y),Var(~x), First3l(~z)

UptoL(~y, ~x, ~z, x
′)← UptoL(~y, ~x

′, ~z, x′),SuccV(~x ′, ~x),

not IqL(~y, ~x),

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

441

UptoL(~y, ~x, ~z, x)← UptoL(~y, ~x
′, ~z, x′),SuccV(~x ′, ~x),

IqL(~y, ~x),Val(~x, ~z, x′′)

CarryL(~y, ~x, ~z, z),Add(x′, x′′, z, y, x)

CarryL(~y, ~x, ~z
′, y)← UptoL(~y, ~x

′, ~z, x′),SuccV(~x ′, ~x),

IqL(~y, ~x),Val(~x, ~z, x′′),Succ3l(~z, ~z ′),

CarryL(~y, ~x, ~z, z),Add(x′, x′′, z, y, x),

LHS(~y, ~z, b)← UptoL(~y, ~x, ~z, b), LastV(~x)

We next make sure the inequalities are satisfied.

Sat(~y)← LHS(~y, ~z, c),RHS(~y, ~z, c′), Last3l(~z),

LEQ(c, c′), c 6= c′

Sat′(~y, ~z)← LHS(~y, ~z, c),RHS(~y, ~z, c′), Last3l(~z), c = c′

Sat(~y)← LHS(~y, ~z ′, c),RHS(~y, ~z ′, c′),Sat′(~y, ~z)

Succ3l(~z ′, ~z), LEQ(c, c′), c 6= c′

Sat′(~y, ~z)← Sat′(~y, ~z′),Succ3l(~z, ~z′), LHS(~y, ~z, c),

RHS(~y, ~z, c′), c = c′

Sat(~y)←Sat′(~y, ~z), First3l(~z) ← Iq(~y),not Sat(~y)

Note that we do not specifically deal with the case where
variables that are set to infinity occur on the LHS but not on
the RHS of some inequality. Such an inequality ~y is not be
satisfied and indeed, due to the stable model semantics, we
are not able to derive Sat(~y).

To finish the construction, we add the rules ensuring that
all the implications are satisfied. For Q ∈ {L,R}, we add:

GT0Q(~y)← ImQ(~y, ~x),Cst3l(~z),not Val(~x, ~z, 0)

← Im(~y),GT0L(~y),not GT0R(~y)

Proposition 1. PT ,Σsol is polynomial in the size of T and Σ

and S has a solution over N∗ iff PT ,Σsol ∪ Rel(S) has an
answer set.

From the results in the previous section and Proposition 1
we obtain the result below.

Theorem 3. For a TBox T and Σ ⊆ NC∪NR, we can obtain
a program PT ,Σsat in polynomial time such that PT ,Σsat ∪ Â has
an answer set if and only if (T ,Σ,A) is satisfiable, for all
ABoxes A over the signature of T .

5 Query Answering and Complexity
In this section, we introduce the notion of ontology-mediated
queries with closed predicates and show how we can answer
them using Datalog with negation.

Let NV be a countably infinite set of variables. An
ontology-mediated query (with closed predicates) (OMQ)
is a triple Q = (T ,Σ, q), where T is a TBox, Σ ⊆ NC ∪ NR
is a set of closed predicates and q is an ordinary first-order
(FO) query over the predicates in NC ∪ NR, the constants in
NI and the variables from NV. A match π for q in an inter-
pretation I is a function that maps every constant to itself
and every free variable of q onto an element of ∆I such
that the query obtained from q by substituting π(x) for each

free variable x in q is true in I. Let Q = (T ,Σ, q) be an
OMQ with x1, . . . , xn being the free variables of q. A tuple
of constants (a1, . . . , an) is a certain answer to Q over an
ABox A, if in every I with I � (T ,Σ,A), there exists a
match π for q such that π(xi) = ai, for all i = 1, . . . , n. The
query answering problem is the problem of deciding, given
an OMQ Q, an ABox A, and a tuple of constants ~a, whether
~a is a certain answer to Q over A.

We first focus on ontology-mediated instance queries (IQs)
and then lift our approach to cover a larger class of OMQs.

Instance Queries. Instance queries are OMQs of the form
Q = (T ,Σ, P (~x)), where P ∈ NC ∪ NR and ~x ∈ NV if
P ∈ NC, otherwise ~x ∈ NV

2. Given a KB K = (T ,Σ,A),
we say that an ABoxA′ ⊆ A is a completion ofA w.r.t T and
Σ if the following holds: (i) for each a ∈ NI(K) and concept
name C ∈ NC(K), either C(a) ∈ A′ or ¬C(a) ∈ A′, (ii)
for each a, b ∈ NI(K) and role name r ∈ NR(K), either
r(a, b) ∈ A′ or ¬r(a, b) ∈ A′, (iii) C(a) ∈ A′ and C ∈ Σ
implies C(a) ∈ A, and (iv) r(a, b) ∈ A′ and r ∈ Σ implies
r(a, b) ∈ A. We say that A′ is a consistent completion of A
w.r.t. T and Σ if A′ is a completion of A w.r.t. T and Σ, and
(T ,Σ,A′) is satisfiable. Instance queries have a convenient
property: a tuple of constants ~a is a certain answer to the
IQ (T ,Σ, P (~x)) over A iff P (~a) ∈ A′, for every consistent
completion A′ of A w.r.t. T and Σ.

Let Q = (T ,Σ, P (~x)) be an IQ. Relying on this property,
we show how to obtain a programPT ,ΣOMQ such that the certain
answers to Q over A coincide with the certain answers to the
Datalog¬ query (PT ,ΣOMQ , P) over Â, for all ABoxes A over
the signature of T . Consider the program PT ,Σsat from the
previous section. Even though each answer set of PT ,Σsat ∪ Â
implicitly corresponds to a consistent completion of A and
vice versa, due to the stable model semantics, this program
does not infer any new atoms over the signature of the TBox
and can therefore not be directly used for query answering.
Thus, we add, for all A ∈ NC(T) \ Σ, B ∈ NC(T), and
r ∈ NR(T) \ Σ, the rules that nondeterministically guess a
completion of an input ABox A over the signature of T :

A(x)← Adom(x), x 6= ∗,not A(x)

B(x)← Adom(x), x 6= ∗,not B(x)

r(x, y)← Adom(x),Adom(y),not r(x, y), x 6= ∗, y 6= ∗
r(x, y)← Adom(x),Adom(y),not r(x, y), x 6= ∗, y 6= ∗

It is easy to see that A′ is a consistent completion of A w.r.t.
T and Σ iff there is an answer set I of PT ,ΣOMQ with Â′ ⊆ I .
As PT ,ΣOMQ is obtained from PT ,Σsat in polynomial time, which
is in turn obtained in polynomial time from T and Σ, we
have the following result:

Theorem 4. Let Q = (T ,Σ, P (~x)) be an IQ. We can obtain
in polynomial time a program PT ,ΣOMQ such that the certain
answers to Q over A coincide with the certain answers of
(PT ,ΣOMQ , P) over Â, for any ABox A over the signature of T .

Theorem 5. IQs mediated by ALCHOIF ontologies with
closed predicates are co-NP-complete in data complexity.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

442

• rr(R(t1, . . . , tn)) :=

{
variables in t1, . . . , tn, if R ∈ Σ

∅, otherwise
• rr(x = a) = rr(a = x) := {x}

• rr(ϕ1 ∧ ϕ2) := rr(ϕ1) ∪ rr(ϕ2) • rr(ϕ1 ∨ ϕ2) := rr(ϕ1) ∩ rr(ϕ2) • rr(¬ψ) := ∅

• rr(ψ ∧ x = y) :=

{
rr(ψ), if {x, y} ∩ rr(ψ) = ∅
rr(ψ) ∪ {x, y}, otherwise

• rr(∃xψ) :=

{
rr(ψ) \ {x}, if x ∈ rr(ψ)

fail, otherwise

Table 2: Computation of Σ-range-restricted variables in ϕ.

Proof sketch. Checking whether a tuple of constants is a cer-
tain answer to a Datalog¬ query is co-NP-complete in terms
of data complexity (Dantsin et al. 2001). As the obtained
query does not depend on A, and Â is obtained from A in
polynomial time, we get the desired upper data complexity
bound. The matching lower bound comes the fact that IQs are
co-NP-complete in data complexity for ALC even without
closed predicates (Schaerf 1993).

Safe-Range Queries. We now extend our results to a larger
class of OMQs. Inspired by safe-range FO queries used
in relational databases for ensuring domain independence
(Abiteboul, Hull, and Vianu 1995), we define safe-range
OMQs Q = (T ,Σ, ϕ) where ϕ is an FO query in which each
variable ranges only over the constants occurring in the pred-
icates from Σ (i.e., the closed predicates) in the ABox over
which Q is being answered. To formally define these queries,
we introduce the notion of Σ-safe-range FO queries, for a
given set of predicates Σ. Checking whether an FO query ϕ is
Σ-safe-range can is done syntactically and consists of the fol-
lowing steps. First, ϕ is transformed into an equivalent query
ϕ′ in safe-range normal form (SRNF) (see e.g., (Abiteboul,
Hull, and Vianu 1995)). Then the set of Σ-range-restricted
variables in ϕ′ is computed using the rules in Table 2. If at
any point we obtain “fail”, ϕ′ is not Σ-safe-range. Otherwise,
we check if every free variable of ϕ′ is Σ-safe-range. If this
is the case, then ϕ′ is range-restricted, otherwise it is not. Fi-
nally, we define safe-range OMQs as OMQs Q = (T ,Σ, ϕ)
in which ϕ is Σ-safe-range FO formula.
Proposition 2. Given a tuple of constants ~a = (a1, . . . , an)
and a safe-range OMQ Q = (T ,Σ, ϕ), where x1, . . . , xn
are free variables of ϕ, ~a is a certain answer to Q over A iff
A′ � ϕ[a1/x1, . . . , an/xn], for every consistent completion
of A w.r.t. (T ,Σ,A).

Every Σ-safe-range FO query q as a Datalog¬ program
rq that is polynomial in the size of q and that, given a set of
ground atoms I , computes the answers to q over I and stores
them in the relation Pq . This can be done by simply using the
rewriting procedure from the literature defined for ordinary
safe-range FO queries. We note that the program rq uses only
stratified negation, and so it has exactly one answer set (Apt,
Blair, and Walker 1988). Thus, we have that ~a is an answer
to q over I iff Pq(~a) occurs in the answer set of rq ∪ I .
Theorem 6. Let Q = (T ,Σ, q) be a safe-range OMQ. We
can obtain in polynomial time a program PT ,ΣOMQ from T and
Σ such that the certain answers toQ overA coincide with the

certain answers of (PT ,ΣOMQ ∪ rq, Pq) over Â, for any ABox
A over the signature of T .

Theorem 7. Answering safe-range OMQs is co-NP-
complete in data complexity for ALCHOIF .

6 Discussion

In this paper, we presented a translation ofALCHOIF with
closed predicates into Datalog with stable negation. Our trans-
lation uses a very different approach from the other transla-
tions in the literature and it is based on a characterization of
the satisfiability problem for this logic as a system of linear
inequalities with some side conditions. Given a TBox T and
a set of closed predicates Σ, we had first shown how to con-
struct in polynomial time a program that takes as an input an
ABox A and decides whether the knowledge base (T ,Σ,A)
is satisfiable. We then showed how to further extend this
program to answer instance queries and safe-range OMQs.
As a by-product of our translation we obtained a proof that
these queries are co-NP-complete in data complexity.

In the future we would like to extend this approach to
ALCHOIQ as well as to investigate the absolute expressive
power of OMQs with ALCHOIF ontologies and closed
predicates, i.e., we would like to know if the considered
query languages are powerful enough to capture all database
queries computable in co-NP. Our approach already covers
a very large class of OMQs, namely the safe-range OMQs.
Going above this class would be difficult as it is known
that first-order queries quickly become undecidable, even for
very basic extensions of conjunctive queries (CQs) and very
lightweight DLs (Gutiérrez-Basulto et al. 2015). Also consid-
ering conjunctive queries is not really a viable option, since it
is known thatALCOIF mediated CQs are co-N2EXPTIME-
hard even in the absence of closed predicates (Glimm, Kaza-
kov, and Lutz 2011). Thus, due to computational complex-
ity reasons, there cannot exist a polynomial translation of
ALCHOIF mediated CQs into Datalog with stable nega-
tion. As a final remark, we note that the considered variant
of Datalog underlies Answer Set Programming (ASP), which
is a very mature area, and many efficient reasoning engines
for this rule language exist. While our polynomial time trans-
lation is unlikely to yield an efficient tool for reasoning with
ALCHOIF ontologies, it nevertheless draws an important
new connection between DLs and ASP.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

443

Acknowledgments
This work was supported by the Vienna Business Agency, and
the Austrian Science Fund (FWF) projects P30360, P30873
and W1255.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.

Ahmetaj, S.; Ortiz, M.; and Šimkus, M. 2020. Polynomial
rewritings from expressive description logics with closed
predicates to variants of datalog. Artif. Intell. 280:103220.
Apt, K. R.; Blair, H. A.; and Walker, A. 1988. Towards a the-
ory of declarative knowledge. In Minker, J., ed., Foundations
of Deductive Databases and Logic Programming. Morgan
Kaufmann. 89–148.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press.
Benedikt, M.; Bourhis, P.; ten Cate, B.; and Puppis, G. 2016.
Querying visible and invisible information. In Proc. of LICS
2016, 297–306. ACM.
Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F. 2014.
Ontology-based data access: A study through disjunctive
datalog, csp, and MMSNP. ACM Trans. Database Syst.
39(4):33:1–33:44.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Au-
tom. Reasoning 39(3):385–429.
Calvanese, D. 1996. Finite model reasoning in description
logics. In Aiello, L. C.; Doyle, J.; and Shapiro, S. C., eds.,
Proc. of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning (KR’96), 292–303.
Morgan Kaufmann.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys 33(3):374–425.
Franconi, E.; Ibáñez-Garcı́a, Y. A.; and Seylan, I. 2011.
Query answering with DBoxes is hard. Electr. Notes Theor.
Comput. Sci. 278:71–84.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proc. of ICLP/SLP
1988, 1070–1080. MIT Press.
Glimm, B.; Kazakov, Y.; and Lutz, C. 2011. Status QIO:
an update. In Rosati, R.; Rudolph, S.; and Zakharyaschev,
M., eds., Proc. of the 24th International Workshop on De-
scription Logics (DL 2011), volume 745 of CEUR Workshop
Proceedings. CEUR-WS.org.
Gogacz, T.; Gutiérrez-Basulto, V.; Ibáñez-Garcı́a, Y. A.;
Murlak, F.; Ortiz, M.; and Šimkus, M. 2020. Ontology
focusing: Knowledge-enriched databases on demand. In
Proceedings of the 24th European Conference on Artificial
Intelligence (ECAI 2020). IOS Press. Extended paper avail-
able at http://arxiv.org/abs/1904.00195.

Gottlob, G., and Schwentick, T. 2012. Rewriting ontolog-
ical queries into small nonrecursive datalog programs. In
Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2012). AAAI Press.
Gutiérrez-Basulto, V.; Ibáñez-Garcı́a, Y.; Kontchakov, R.;
and Kostylev, E. V. 2015. Queries with negation and inequal-
ities over lightweight ontologies. Journal of Web Semantics
35:184–202.
Hustadt, U.; Motik, B.; and Sattler, U. 2007. Reasoning in
description logics by a reduction to disjunctive datalog. J.
Autom. Reasoning 39(3):351–384.
Lutz, C.; Sattler, U.; and Tendera, L. 2005. The complexity
of finite model reasoning in description logics. Inf. Comput.
199(1-2):132–171.
Lutz, C.; Seylan, I.; and Wolter, F. 2013. Ontology-
based data access with closed predicates is inherently in-
tractable(sometimes). In Rossi, F., ed., Proceedings of the
23rd International Joint Conference on Artificial Intelligence,
Beijing (IJCAI 2013), 1024–1030. IJCAI/AAAI.
Ortiz, M.; Rudolph, S.; and Šimkus, M. 2010. Worst-case
optimal reasoning for the Horn-DL fragments of OWL 1
and 2. In Proc. of the 12th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2010). AAAI
Press.
Papadimitriou, C. H. 1981. On the complexity of integer
programming. Journal of the ACM (JACM) 28(4):765–768.
Pratt-Hartmann, I. 2005. Complexity of the two-variable frag-
ment with counting quantifiers. Journal of Logic, Language
and Information 14(3):369–395.
Schaerf, A. 1993. On the complexity of the instance checking
problem in concept languages with existential quantification.
J. Intell. Inf. Syst. 2(3):265–278.
Tobies, S. 2000. The complexity of reasoning with cardinality
restrictions and nominals in expressive description logics. J.
of Artificial Intelligence Research 12:199–217.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

444

http://arxiv.org/abs/1904.00195

	Introduction
	Preliminaries
	KB Satisfiability via Integer Programming
	The Translation
	Generating Linear Inequalities
	Solving Linear Inequalities

	Query Answering and Complexity
	Discussion

