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Abstract

Semantic Heterogeneity is the problem which arises when
multiple resources present differences in how they represent
the same real world phenomenon. In KR, an early approach
was the development of ontologies and, later on, when on-
tologies showed at the knowledge level the same semantic
heterogeneity that they were meant to fix at the data level, to
compute mappings among them. In this paper we acknowl-
edge the impossibility of avoiding semantic heterogeneity,
this being a consequence of the more general phenomenon
of the diversity of the world and of the world descriptions. In
this perspective the heterogeneity of ontologies is a feature
(and not a bug to be fixed by aligning them) which gives the
possibility to use the most suitable ontology in any given ap-
plication context. The main contributions of this paper are: (i)
a novel articulation of the problem of semantic heterogeneity,
as it appears at the knowledge level, as contextuality, (ii) its
qualitative and quantitative formalisation in terms of a set of
diversity and unity metrics and (iii) an Entity Type Recogni-
tion algorithm which selects the contextually most appropri-
ate ontology and exploits it to solve the current problem, e.g.,
the alignment and integration of a set of input schemas. The
experimental results show the validity of the approach.

1 Introduction
Semantic Heterogeneity is the problem which arises when
multiple resources, e.g., knowledge or data bases, usually
developed by independent parties, present differences in the
way they represent the same real world phenomenon. In
KR, the first and main approach was and, correctly so, still
is, the development of a set of reference Knowledge Bases
(KBs), e.g., ontologies or schemas, to be used as reference
resources.1 This line of work has produced a high quan-
tity of high quality results. As an example, LOV, LOV4IoT,
and DATAHUB,2 three among the most relevant reposito-
ries, collectively contain around 1000 such KBs, some of
which contain thousands of elements. In turn, this work

1In this paper we use the terminology used for knowledge
graphs and represent KBs as sets of schemas and, in turn, schemas
as types of entities, e.g., Person), each being associated with a set
of properties (e.g., birth-date) (Bonatti et al. 2019; Kejriwal 2019).
In other words, a KB is a knowledge graph with no instances and
where the nodes are entity types and the links are properties.

2https://lov.linkeddata.es/, http://lov4iot.appspot.com/, https://
old.datahub.io/

has motivated the research on Ontology and Schema Align-
ment (Euzenat, Shvaiko, and others 2007; Giunchiglia and
Shvaiko 2003; Giunchiglia, Yatskevich, and Shvaiko 2007;
Shvaiko and Euzenat 2011; Algergawy et al. 2018)3 with the
goal of absorbing the differences across reference KBs.

In this work we exploit and build upon the work men-
tioned above, but taking a somewhat alternative approach,
as originally envisaged in (Giunchiglia 2006). The start-
ing point is the observation that the heterogeneity of data
and knowledge is a special case of the more general phe-
nomenon of diversity. Diversity is a distinguishing feature
of the world: there will never be two identical moments
places or objects. This generates incompleteness and this is
the main motivation for data or knowledge integration in its
various forms, see, e.g., (Giunchiglia and Fumagalli 2019;
Wang et al. 2017). At the same time, diversity is also perva-
sive in the descriptions of the world: even for the same phe-
nomenon, different observers will provide different descrip-
tions, in relation to the local context, i.e, needs, objectives,
and many other factors (Giunchiglia and Fumagalli 2017),
this being the main bottleneck towards integration.4

The diversity of descriptions can be split in two largely
independent phenomena. The first is the diversity of lan-
guage, namely the fact that the mapping between words and
their intended meaning is many-to-many (Giunchiglia, Bat-
suren, and Bella 2017), as witnesses by many well-known
linguistics phenomena, e.g., polisemy, homographs, syn-
onymity. The second is the diversity of knowledge, namely
the fact, even under the assumption of no language diversity,
that there is a many-to-many mapping between entity types
(etypes from now on) and the properties used to describe
them. Thus, we may have etypes which are under-specified,
etypes which are over-specified and cumulate the properties
of less general etypes, as in Schema.org5 (Patel-Schneider
2014) and KBs where the same etypes have largely disjoint
sets of properties, as it is the case with Schema.org and DB-
pedia.6

In this paper we propose a solution to the problem of

3See also http://om2019.ontologymatching.org/#ap
4Notice how semantic heterogeneity, as defined above, is a spe-

cial case of the diversity of the world descriptions.
5www.schema.org
6wiki.dbpedia.org
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the diversity of knowledge.7 Technically we instantiate this
problem as an etype recognition problem as follows:
Given multiple reference KBs and given an input KB with
a set of unknown etypes, each associated to a set of known
properties, predict all the etypes of the input KB.
Some observations. The first is that, as from above, the di-
versity of knowledge appears in the form of two or more het-
erogeneous etypes which are indeed different descriptions
of possibly the same real world phenomenon. The second is
that we assume the availability of a repertoire of high quality
(heterogeneous) reference KBs, e.g., those from the reposi-
tories mentioned above. Given the unavoidability of diver-
sity, the heterogeneity of the reference KBs is a feature (and
not a bug to be fixed by aligning them) in that different ref-
erence KBs encode different application contexts. The third
is that diversity becomes a problem only if and when it is
unknown and needs to be locally handled, for instance when
there is a new KB (e.g., of a set of schemas which need to
be aligned). The fourth is that the solution is not to elimi-
nate the diversity of the input KB, which is impossible, but,
rather, to understand how the new KB relates to the existing
reference KBs. The fifth is the assumption that the etypes
of the input KB are unknown, even if the input KB defines
them. This technically models the unknown quality and di-
versity of the input KB.

The algorithm proposed in this paper handles the hetero-
geneity of the input KB in two steps: (i) select the KB which
codifies the closest contextual view point and (ii) use it to
disambiguate the etypes of the input KB based on their prop-
erties. Notice how any manipulation (e.g., composition) of
the reference KBs, if at all needed, is done only based on the
knowledge of the input KB. The main contributions of this
paper are as follows:

1. a formal model of knowledge diversity, where knowledge
is modeled as a set of semantically heterogeneous KBs,
where KBs are modeled as a (variation of) Formal Con-
cept Analysis (FCA) contexts (Ganter and Wille 2012)
(Section 2);

2. a graphical model and representation of contextuality, in
terms of Knowledge Lotuses (Section 2);

3. the articulation of contextuality in terms of the unity and
diversity, where unity is defined in terms of what is shared
across contexts, etypes or properties, and the opposite for
diversity (Section 3);

4. a quantitative model of knowledge diversity and unity, as
a set of metrics which apply to contexts, etypes and prop-
erties (Section 4);

5. an Entity Type Recognition algorithm, implemented as a
classifier applied to the reference KB which better fits the
input schema (Section 5).

The paper is completed as follows. Section 6 provides an
evaluation of the algorithm presented in Section 5. Section 7

7In KBs, language diversity appears in the labels used to denote
entity types and properties. Section 5 describes how we handle
language diversity using techniques from (Giunchiglia, Yatskevich,
and Shvaiko 2007).

and Section 8 provide the related work and the conclusions,
respectively.

2 Diversity as Contextuality
We adapt ideas and notation from FCA (Ganter and Wille
2012) and formalize KBs, which we take to be sets of
etypes and corresponding properties, as (Knowledge) Con-
texts, where we define a (Knowledge) Context C as C =
〈EC,PC, IC〉, with EC = {e1, ...,en} being the set of etypes,
PC = {p1, ..., pn} being the set of properties of C, and IC
being IC = {〈e, IC(e)〉 | e is an etype of C}, with IC(e) =
{p ∈ PC | p is a property of e}. We say that an etype is as-
sociated to a property when the latter is used to describe the
former, and that a property is associated to an etype with
the dual meaning.8 These definitions are similar to the ones
from FCA with two key differences:

• EC is a set of etypes and not a set of entities;
• IC applies to a single element of EC and not to a subset of

EC.

Table 1: A context for (a portion of) SUMO
Thus, for instance, Table 1 reports a set of etypes (left)

with corresponding properties (top) from SUMO.rdf 9, ver-
sion 1.0. The value boxes with crosses represent IC, while
the set of value boxes in the same line represent IC(e) for
the etype e in that same line. A missing cross means that
that property is not used to describe that etype. The main
motivation for this choice is that etypes are the basic ele-
ments which populate a knowledge context. Here, the word
“populate” is used on purpose, meaning that etypes have
for contexts the same role that entities have for etypes. In
the same way as (the schema of) a single etype collects
entities at the data level, (the schema of) a single knowl-
edge context collects etypes at the knowledge level; and,
in both cases, properties are what allows to discriminate
among elements, i.e., etypes or entities. From a philosoph-
ical point of view this intuition is rooted in the recent work
in Teleosemantics (Macdonald, Papineau, and others 2006;
Millikan 2017), as largely discussed in (Giunchiglia and Fu-
magalli 2016), which shows that there is no real difference
between etypes (i.e., classes), called Kinds in (Giunchiglia
and Fumagalli 2016), and etypes (i.e., instances), called In-
dividuals in (Giunchiglia and Fumagalli 2016).

Based on the above intuitions, we call EC the Extent of the
knowledge context C and PC the Intent of the knowledge con-
text C. Furthermore, we define the notion of (Knowledge)

8Notice how etypes are defined in terms of properties which
are taken to be primitive.A straightforward extension would be to
reason about properties defined in terms of “more primitive” prop-
erties. This is part of the future work.

9www.adampease.org
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Concept Co as the pair Co = 〈e, IC(e)〉. When p ∈ IC(e)
we also talk of e being in the domain of p, in formulas e
∈ dom(p). IC(e) is called the Intent of the Concept Co as
it defines how its etype is intentionally defined in terms of
a subset of the properties of C. Notice that IC = {Coi}i∈M ,
with M the number of etypes of C. In other words, a con-
text is a set, actually a lattice, of concepts (Ganter and Wille
2012).

Given our reference scenario, we make two assumptions:

• We have an unbound number of contexts Ci =
〈ECi ,PCi , ICi〉 which, in turn, ...

• ... can make use of any number of etypes ECi and proper-
ties PCi , some of which are never used in any other con-
text.

These hypotheses model what we call a Diverse KB, char-
acterized by the impossibility of making any design time as-
sumption about the number and (diversity of) content of the
available contexts. We model this situation in that we allow
a possibly infinite set of etypes E, a possibly infinite set of
properties P, and a set of N contexts Ci, with

⋃
i ECi ⊆ E and⋃

i PCi ⊆ P, where K, defined as:

K =
⋃
i∈N

Ci,

is the system’s KB at any given time. Following the termi-
nology from (Giunchiglia 1993) we say that K is a Multi-
Context system.

Figure 1: (a) Shared properties across etypes; (b) Shared proper-
ties across resources; (c) Shared etypes across resources.

Given K, we represent the diversity which occurs within
and across its constituent contexts with Knowledge Lotuses.
Knowledge lotuses are Venn Diagrams.10 Fig 1 depicts
three lotuses where we assume that we have four contexts
built from (parts of) the four biggest KBs from the reposi-
tories mentioned above, namely OpenCyc (OC)11, the DB-
pedia (schema) (DB), Schema.org (SH), and SUMO (SU).
These three lotuses are paradigmatic examples of all and
only the possible visualizations of knowledge diversity. In
fact, knowledge lotuses allow for the hierarchical model-
ing of the three core elements of knowledge, (viz., contexts,
etypes, and properties), namely: (a) contexts, for each con-
text, (b) its etypes and, for each etype, (c) its properties. The
key intuition is to fix one of these three elements (namely the

10Lotuses in Fig 1 represent four sets. Simpler/complex lotuses
can be depicted to represent the diversity of lower/ higher numbers
of resources. More complex lotuses (more than 6 intersections)
can be visualized using ad-hoc data visualization libraries (e.g., the
upset-module from https://asntech.shinyapps.io/).

11www.cyc.com

context(s), or the etype(s), or the property(ies)) and then to
study the diversity of the second against the third. Each com-
bination provides a different perspective on diversity. Let us
analyse Fig 1.

• Lotus (a) fixes the context (SUMO) and it represents the
diversity of etypes in terms of their (un)shared proper-
ties. The dual case of comparing properties in terms of
the etypes in their domain is also possible. These types
of lotuses represent the diversity internal to a context, in
terms of their etypes or their properties.

• Lotus (b) fixes the etype (Person) and it represents the di-
versity of contexts in terms of their (un)shared properties
(for that etype). The dual case of comparing properties
in terms of the contexts where they occur is also possi-
ble. These types of lotuses represent the diversity across
contexts, for any given etype.

• Lotus (c) fixes the properties (considering all of them)
and it represents the diversity of contexts in terms of the
(un)shared etypes. The dual case of comparing etypes in
terms of the contexts where they occur is also possible.
These types of lotuses represent the diversity across con-
texts, for any given property.

Thus, for instance, looking at Fig 1(a), in SUMO, Per-
son and Place share 2 property terms, while they are dis-
tinguished by 26 and 167 terms, respectively. Looking at
Fig 1(b), the four representations of Person share only one
property, while two of them, i.e., OpenCyc and DBpedia
share 40 properties.

3 Context, Unity and Diversity
We model KBs as contexts, where each context encodes a
different viewpoint on the world. The issue is how to model
the diversity which occurs across and within contexts, in the
latter case, across their etypes and properties. Let us assume
that we want to study the diversity of any two homogeneous
knowledge elements, viz. two contexts, two etypes, or two
properties. Then, given any two such elements, e.g., two
etypes,

• Their (Etype) Diversity relates
1. to how many properties they do not share within one or

more (or all) contexts and
2. to how many contexts they do not share, in relation to

one or more (or all) of their properties.
• Their (Etype) Unity12 relates

1. to how many properties they do share within one or
more (or all) contexts and

2. to how many contexts they do share, in relation to one
or more (or all) of their properties

Some observations. The first is that the definitions above
can be generalized to contexts and properties. The second
is that the etype diversity and unity labeled with [1.] corre-
spond to the Lotus (a) in the previous section, while those
labeled with [2.] are the dual case of Lotus (c). In fact the

12The notion of Unity used here is unrelated to the notion, with
the same name, used in OntoClean (Guarino and Welty 2002).
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Figure 2: (a) etypes across contexts; (b) (c) (d) (e) properties of Person, Organization, Event and Place across contexts.

above definitions of diversity and unity are all and only the
possible cases and can be mapped one-to-one with the lo-
tuses from the Section 2. The third is that diversity and unity
are not binary properties but they take a continuum of val-
ues. The fourth is that Diversity and Unity are not opposite
properties. For instance, two etypes can have both a high
level of diversity (because of a lot of unshared properties
or contexts) and a high level of unity (because of a lot un-
shared properties or contexts). Any diversity measure D and
its complement unity measure U can be assumed to stand
in the relation D+U = 1 only if we define a reference sce-
nario, for instance, if we know K with its set of entities and
properties. But, as from Section 2, we assume that this in-
formation is not available (e.g., because of the evolution in
time of contexts).

Fig. 2 provides a first comparison, where Fig. 2(a) pro-
vides the total number of (un)shared etypes across the four
resources, while Fig. 2(b), 2(c), 2(d), 2(e) provide the num-
ber of (un)shared properties of Person, Organization, Event
and Place. Furthermore, Table 2 reports the etypes shared
across, 2, 3, 4 contexts, while Table 3 reports the properties
shared across the four contexts for Person.

The first observation is about the low level of unity across
contexts. Despite the fact that they are all supposed to be
general purpose there are only four etypes which are shared
by all of them: Event, Place, Person and Organization,
namely the etypes for time and space, i.e., the two a pri-
ori of perception (Kant 1998; Strawson 2017) and the ar-
guably most common types of agenthood. Notice that, if
we add the fifth and sixth biggest contexts, i.e., Proton13

and YAGO14, we still maintain the same four shared etypes.
Things change if we consider smaller contexts, the main rea-
son being that these latter contexts are focused on specific
aspects of the world; for instance, FOAF15 is focused on
Person.

The second observation is about the high level of diversity
across contexts. As from Fig. 2(a) most etypes are defined
in only one context (e.g., ∼ 2000 in OpenCyc and ∼ 220 in
DBpedia) this being mainly motivated by the different focus.
Thus, for instance, Schema.org is more focused on informa-
tion objects while DBpedia contains a large amount of infor-
mation about biological species, with this phenomenon be-
coming even more evident in smaller contexts (e.g., FOAF).

The third observation is about the diversity and unity of
properties. Consider for instance the properties of Person

13http://www.ontotext.com/proton/protontop.html
14https://datahub.io/collections/yago
15http://www.foaf-project.org/

contexts Tot. etypes
OC, DB, SH, SU 4 Person, Organization, Event, Place, . . .
OC, DB, SH 3 SportsTeam, SportsEvent, Action, . . .
OC, DB, SU 4 City, PoliticalParty, Language, Animal, . . .
OC, DB 23 Hospital, SportsLeague, BodyOfWater, Sport, . . .
OC, SH 9 Offer, EducationalOrganization, Message, Role, . . .
OC, SU 27 UnitOfMeasure, CreditAccount, ComputerNetwork, . . .
DB, SH 4 VideoGame, CreativeWork, Airport, . . .
DB, SU 6 Region, Ship, MilitaryUnit, Agent, . . .
SU, SH 1 Vehicle, . . .

Table 2: The shared etypes across knowledge contexts

contexts Tot. Properties
OC, DB, SH, SU 1 spouse
OC, DB, SH 9 date, title, number, related, birth, parent, work, name, place
OC, DB, SU 1 occupation
OC, DB 29 ethnicity, skin, activity, employer, status, education
OC, SH 9 contact, suffix, tax, job, children, works, worth, gender, net
DB, SH 10 death, sibling, point, member, nationality, award, parents

Table 3: The shared properties of Person

as from Table 3. On one side, the most shared properties
are those which seem, somewhat often, relevant while, on
the other side, the least shared are those which seem less
relevant. Thus, for instance, the most shared properties of
Person are, e.g., name, birth, place, occupation, or title,
while, for instance, in Schema.org (only), Person has a huge
amount of properties concerning their business, e.g., spon-
sor, brand or catalog. Similarly, in DBpedia (only), Person
has more biologically relevant properties, e.g., blood, body
or race. The first type of properties are somewhat related
to essential or rigid properties, as defined in (Guarino and
Welty 2002). Furthermore, following Donellan (Donnellan
1966), these properties are those which are more amenable
for an attributive usage while the others are more amenable
for a referencial (or contextual) usage. Notice, however, that
this distinction is not clear-cut. No property is fully rigid in
the sense that there will always be contexts which are out-
liers. For instance a person living alone in the jungle will
have no name or, following the example in (Guarino and
Welty 2002), a dead person may have had her brain removed.
All properties are contextual, still with different degrees of
rigidness/referentiality, and this applies also for those oc-
curring in reference knowledge contexts that we decide to
take as a priori knowledge. We capture this idea by call-
ing the two types of properties mentioned above, standing
on somewhat opposite extremes, (quasi) rigid and (highly)
contextual, respectively.

4 Knowledge Metrics
But how to use diversity and unity to select the most suitable
context? By metrics.
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Figure 3: (a) properties shared among four etypes across contexts; (b) (c) (d) (e) properties shared among four etypes in each context.

4.1 Etype and Property Metrics
We start from property metrics. Towards this goal, we rely
on the seminal work by Eleanor Rosch and, in particular, on
her notion of cue validity (Rosch 1999; Rosch and Mervis
1975). This notion was defined as “the conditional proba-
bility p(c j| f j) that an object falls in a category c j given a
feature, or cue, f j”. It was used to define the set of basic
level categories, namely those categories which maximize
the number of characteristics shared by their members (what
here we call highly contextual properties) and minimize the
number of characteristics shared with the members of their
sibling categories (what here we call quasi-rigid properties)
(Rosch 1999). The intuition is that basic level categories
have higher cue validity and, because of this, they are eas-
ier to recognize. Rosch’s definitions were designed for ex-
periments where humans (trained to recognize objects be-
cause of their life experiences) were asked to identify objects
based on their visual properties. In our setting a pre-trained
classifier is asked to recognize an etype based on its prop-
erties. We follow Rosch’s original methodology and define
the cue validity of a property p w.r.t to an etype e, also called
cuep− validity, as

Cuep(p,e) =
PoE(p,e)
|dom(p)|

= c ∈ [0,1] (1)

with | X | being the cardinality of the set X and PoE(p, e)
being defined as:

PoE(p,e) =
{

1, i f e ∈ dom(p)
0,otherwise (2)

Cuep(p,e) returns 0 if p is not associated with e and 1/n,
where n is the number of etypes in the domain of p, oth-
erwise. In particular, if p is associated to only one etype
its cuep− validity is maximum and equal to one. The intu-
ition is that all properties have the same recognition poten-
tial (which we assume to be normalized to one) and that this
impact is equally “divided” across the etypes they are asso-
ciated to: the more etypes, the more widespread the impact
and the lower the impact per etype. Cuep(p,e) is a diversity
metric and, as such, it grows whenever properties are not
shared across entities. Given the notion of cuep− validity
we define the notion of cue validity of an etype, also called
cuee− validity, as the sum of the cue validities of the prop-
erties associated with the etype, namely:

Cuee(e) =
|prop(e)|

∑
i=1

Cuep(pi,e) = c ∈ [0, prop(e)] (3)

where prop(e) is the set of properties which are associated
with e. The intuition is the same as Rosch’s: the etypes with
higher cuee− validity will be the easiest to recognize.

Person Event
Cuee Cueer Cueec Cuee Cueer Cueec

(a) Overall 436.3 0.84 0.16 193.85 0.82 0.18
(b) OpenCyc 241.47 0.88 0.12 167.64 0.89 0.11
(c) DBpedia 224.49 0.95 0.05 10.5 0.81 0.19

(d) Schema.org 42.22 0.69 0.31 31.39 0.80 0.20
(e) SUMO 26.5 0.95 0.05 20.33 0.92 0.18

Table 4: Cue values computed from the lotuses in Figure 3, with a
focus on Person and Event.

However the cuee − validity does not tell us anything
about the level of contextuality or, dually, of rigidness of an
etype, meaning by this how many properties it shares with
other etypes in the same context, a parameter with major im-
plications on knowledge recognition. To make an example,
assume that we have two etypes and two properties, with
two possible situations: (i) both etypes share both proper-
ties and (ii) the two etypes are each associated to one prop-
erty. In both cases the cuee− validity of the two etypes is
one but, while in the first case the two etypes are indistin-
guishable, in the second case they are highly identifiable. In
other words, having a high cuee− validity the two etypes
are highly recognizable but, having a low level of rigidness,
they are hardly distinguishable. We capture this intuition
via the notion of (level of) rigidness of an etype, also called
cueer− validity, as:

Cueer(e) =
Cuee(e)
|prop(e)|

= c ∈ [0,1] (4)

Thus, for instance, in the first case in the example above, the
cueer − validity of the both etypes will be 0.5 while in the
second case it will be one. Dually, we define the (level of)
contextuality of an etype, also called cueec− validity, as

Cueec(e) = 1−Cueer(e) = c ∈ [0,1] (5)

The cueer-validity is a diversity metric while the cueec-
validity is a unity metric in that it grows with the number
of shared properties. To understand why we have called the
above metrics, diversity of unity metrics, Look at Table 4,
which reports the cue values extracted from the knowledge
lotuses represented in Figure 3, with a focus on Person and
Event.

A first observation is that the value of Cuee tells us that
provides insights about the size of its etype. For instance, ex-
cluding the overall view, the context with the largest etypes
is OpenCyc, while the value of Cueer is connected to the
number of properties in the petals of the lotuses in Figure 3
(e.g., 372 in Person (a) and 215 in Person (b)). Looking at
the data in Table 4 It can be noticed how Schema.org is the
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weakest in terms of rigidness and the best in level of contex-
tuality (see the Cueec value). Finally, see how the accumu-
lation of properties of a given entity type through multiple
contexts results in a decrease of the Cueer value and an in-
crease of the Cueec value.

In graphical terms, the relation between lotuses and the
cue metrics can be understood as follows: the higher the
number of the properties in the petals of a lotus, the higher
the value of Cueer (which is in fact a diversity metric) and,
dually, the higher the number of the properties in the corolla
of a lotus, the higher the values of Cueec (which is in fact
a unity metric). This is the same when lotuses are used to
represent the unity and diversity in terms of shared (and not
shared) etypes. Thus, lots of elements in the corolla means
unity, while in the petal mean diversity.

4.2 Context Metrics
The notions and terminology used for etypes, i.e., the no-
tions of Cuee and Cueer and Cueec can be generalized to
contexts, generating context diversity and unity metrics, as
follows:

Cuec(C) =
|EC |

∑
i=1

Cuee(ei) = |prop(C)| (6)

Cuecr(C) = |prop(C)|/
|EC |

∑
i=1

prop(ei) = c ∈ [0,1] (7)

Cuecc(C) = 1−Cuecr(C) = c ∈ [0,1] (8)

The result reported in equation (6) can be easily understood
by looking at equations (1), (3): etypes only get distributed
the recognition potential of properties which is anyhow fixed
by their number. While the cue validity of a context (i.e., its
number of properties), also called cuec− validity Cuec(C),
will measure the overall capability of a context to support
knowledge recognition, the rigidness validity of a context,
also called cuecr − validity Cuecr(C), derived by equation
(7), will measure its overall level of rigidness. These two
cues model the properties of a context. However, no matter
its quality, a context is useless if it does not represent the
properties of the etype to be predicted. Let us formalize this
intuition. Let I be an input context, which we assume to be
a set of sets of properties, where each set describes an un-
known etype. Then, we define the coverage of a context C,
also called ci-coverage, w.r.t to an input schema I as follows:

Covci(C, I) = 1−
(
|prop(I)− prop(C)|

|prop(I)|

)
= c ∈ [0,1] (9)

where the function prop is extended to apply to both C and
I. If Covci(C, I) = 1(0), then all (no) properties in I occur in
C. Notice how coverage is a unity metric. Furthermore, we
take into account the fact that the non-shared properties play
no role in the knowledge recognition task, for any such task
the actual knowledge recognition capability will be highly
dependent on the input. We take this into account by intro-
ducing the two notions of (input) relative cue validity of a

context, in formulas Cueci(C, I), and (input) relative rigid-
ness of a context, in formulas Cuecri(C, I)16 as follows:

Cueci(C, I) =
|EC∩I |

∑
i=1

Cuee(ei) = |prop(C∩ I)| (10)

Cuecri(C, I) = |prop(C∩ I)|/
|EC∩I |

∑
i=1

prop(ei) = c ∈ [0,1] (11)

These two definitions are obtained from equations (6) - (7)
by substituting C with C∩ I, where C∩ I is obtained from C
by deleting all the properties not shared with I, and also all
those etypes which, as a result, have zero properties. We call
C∩ I the shared context. Notice how the two metrics above
are, respectively, diversity and unity metrics of the shared
context.

5 The Etype Recognition Algorithm
The introduction has informally introduced the main idea
underlying the implementation of the etype recognition al-
gorithm. Based on that, the algorithm is implemented in two
steps, as follows:

1. Context determination: select the best reference context
and check its suitability and, in case such a context has
been found,

2. eType recognition in context: predict the unknown etypes.

Let us consider these two steps in detail. The first step,
namely selection of the best context and the validation of
its appropriateness for the given task is performed based on
the set of metrics described in Section 4. This component
implements two main steps:

1. maximize the unity between the input context and the ref-
erence context. We implement this requirement by select-
ing those contexts where the coverage is highest;

2. maximize the diversity of the reference context. We im-
plement this requirement by selecting the context gener-
ating the context, shared with the input, with the highest
relative cue validity.

The underlying intuition should be obvious: with the first
operation we minimize the misalignment between the ref-
erence context and the input context, thus minimizing the
amount of noise introduced by the enrichment, while, with
the second operation, we minimize the noise introduced by
the context internal confusion across etypes.

Let us now concentrate on the second step, which we im-
plement as a multi-label supervised classification task. The
process can be briefly described as follows:

1. All reference contexts are expressed in the Terse RDF
Triple Language (Turtle)17 format. The context hierar-
chy is flattened into a set of sets of triples, where each
triple encodes information about “etype-property” asso-
ciations IC(e) (e.g., the triple “Person-domainOf-friend”

16Cueei(C, I) and Cueeri(C, I) are used also to relativise the no-
tions of cuee− validity and cueer− validity. Technically this can
be done by taking etypes to be single etype contexts.

17https://www.w3.org/TR/turtle/
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Figure 4: Precision/recall/F1, for Person, Org., Event, Place in SUMO, DBpedia, OpenCyc and Schema.org, + Overall Accuracy.

encodes the “Person-friend” IC(e) association. Notice
that this representation maps to the FCA encoding de-
scribed in Section 2 (see, e.g., Table 1), and, accord-
ing to it, each relation of type “Person-friendOf-Person”
is expressed by two triples, i.e., “Person-domainOf-
firendOf” and “Person-rangeOf-firendOf”. Moreover,
this method resembles the underlying idea of Knowledge
Graph Embedding (KGE) methods (Wang et al. 2017;
Dumančić, Garcı́a-Durán, and Niepert 2019), which con-
sists of finding the vector representation of triples like
“Marc-friendOf-Eve”. The main difference in KGE is that
the vectors provide representation of instances (and val-
ues). Differently, in our approach we provide a represen-
tation of sort of “higher-order predications”, where the
relations (i.e., the predicates of the triples) always denote
meta-level relations (e.g., domainOf) between the graphs
concepts. This encoding is applied to all the selected ref-
erence contexts as well as to the input contexts.

2. The context labels (both properties and etypes) present a
high level of syntactic and semantic heterogeneity, that
is, many such labels are minor variations of the same
label, still carrying the same meaning. We handle this
problem exploiting techniques which are very similar to
those used in ontology matching, see, e.g., (Giunchiglia
and Shvaiko 2003; Giunchiglia, Autayeu, and Pane 2012;
Bella, Giunchiglia, and McNeill 2017). The key idea is
that labels are analyzed via a NLP pipeline which per-
forms various steps, including, for instance: a) split a
string every time a capital letter is encountered (e.g.,
birthDate → birth and date); b) lower case all charac-
ters; c) filter out stop-words (e.g., hasAuthor → author),
d) substitute synonyms.

3. Each selected reference context is used to train a model
later used to predict the etype(s) of the input context. In
the training, the etypes of the reference context are used
as ground truth.

It is important to notice our quite unusual notion of ground
truth. As a matter of fact we have one ground truth per
reference context. From a technical point of view this is
made possible by the very high quality of the reference con-
texts. There is in fact a sense in which each of them cod-
ifies a different local truth, i.e., that implicitly defined by
the resource creators. This highlights the fact that the diver-
sity among contexts is nothing else that the syntactic repre-
sentation of different diverse local meanings and semantics
(for instance as codified in multi-context systems (Ghidini
and Giunchiglia 2001)). Once we take knowledge diversity

for real, we have to give up the idea that we have a single
(ground) truth to which we can report for the final decision
of what is the case.

6 Evaluation
We organize the evaluation in three parts. In Section 6.1
we analyse the effects that the internal diversity and unity
of contexts has on their ability to enable the recognition of
their own etypes. This section is quite important as it shows
the negative effects which (may) arise with the size of con-
texts. The next two sections evaluate the two components
of the etype recognition algorithms. In particular, in Section
6.2 we analyze the performance of the etype recognition al-
gorithm, while in Section 6.3 we analyse the performance of
the context determination algorithm.

The experiments have been done using decision trees ap-
plied to the four contexts selected in Sect. 3. We se-
lected accuracy as main criterion, with max depth possible.
We pruned the tree after the generation, by replacing some
branches according to confidence “0.25”. Notice that, be-
cause of the high quality of the KBs data, learned models
and parameters selection were very robust to changes, thus
providing indirect evidence of the generality of the results.
When training the models, we have used only properties,
thus forgetting the objects of properties. Finally, in the eval-
uation, we have used precision, recall, F1 measure and ac-
curacy, the latter used with even distributions of properties
across etypes.18

6.1 Etype Self-recognition
The question is the contexts’ ability to (self)-recognize their
own etypes. In this experiment we have used the four etypes
present in all four contexts, namely, Person, Organization,
Event and Place. The results are reported in Table 5.

Trial Accuracy Person F1 Organization F1 Event F1 Place F1

OpenCyc vs. OpenCyc 0.98 0.98 0.98 0.99 0.97

DBpedia vs. DBpedia 0.98 0.99 1.00 0.90 0.99

Schema.org vs. Schema.org 0.73 0.76 0.53 0.84 0.76

SUMO vs. SUMO 1.00 1.00 1.00 1.00 1.00

Table 5: Results of the first experiment

Differently from what we expected, F1 is almost never
1.0, with two negative peaks with Schema.org (on all etypes)
and DBpedia (on Event). Furthermore, as expected, the

18Data can be found at https://github.com/knowdive/ETR
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more etypes are used in the training phase, the worse the per-
formance gets. This phenomenon is well explained by how
diversity operates. Ideally, one would like to use the biggest
possible context. But the main (only?) way to achieve this
is to add contextual properties: the more diversity the more
ability to discriminate. However, the side effect is an in-
crease of the probability of sharing contextual properties
across etypes which, in specific contexts, have a similar role.
This effect is quite evident in Schema.org, where Organi-
zation and Person share properties related to their agentive
roles. Dually all SUMO’s scores are top, this being moti-
vated by the fact that most SUMO properties are quasi-rigid.

6.2 Etype Recognition in Context
In this experiment we have used the same models as in the
first experiment but with input etypes only from Schema.org.
The results are reported in Fig. 4. For each trial (one per ref-
erence context), we provided Accuracy, F1, Precision and
Recall, this allows us to better understand and exploit the
role of each reference context in the etype recognition task.
The highest scores are, of course, always with Schema.org.
Let us focus on the behaviour of the other reference con-
texts. Let us focus on Overall (extreme right). In terms
of accuracy, the second best reference context is OpenCyc.
This means that with OpenCyc we have the highest propor-
tion of true results among the total number of cases exam-
ined (e.g., among all the results of the ETR task). Notice
that we have a true result when a property is (or is not) a
property of an etype according to the input context and it
is recognized as such, given the reference context. How-
ever the situation changes when we analyze Precision and
recall. Considering precision, the second best reference con-
text is SUMO, meaning by this that with SUMO we have
the highest proportion of properties recognized as properties
of given etypes, according to the reference context, that are
truly properties of that etypes according to the input con-
text (e.g., high precision for Person and Organization means
that a high number of properties recognized as properties of
Person and Organization are properties of Person and Orga-
nization according to the input context). while, considering
Recall, OpenCyc is again the second best.

This misalignment between the different measures is quite
relevant in this setting. In fact, here the situation is opposed
with respect to what is usually the case in machine learn-
ing: instead of having a single ground truth against which
we evaluate a set of case studies, here we have a single case
study (in Fig. 4, there are five of them analyzed in paral-
lel: four etypes and the overall combination) and a set of
ground truths that are, actually, the goal of our evaluation.
Depending on the goal we may prefer a higher precision
(i.e., decreasing the false positives) in which case we max-
imize the unity, namely the coherence of the input context
with the reference context. This is desirable in applications
where the reference context is used as background knowl-
edge, in data integration tasks, or when building the model
in vertical federated learning tasks (Yang et al. 2019). No-
tice that, in these applications, an exceedingly low precision
is to be avoided in that this means high confusion across the
etypes of the two contexts. But in other applications, e.g.,

in horizontal federated learning tasks (Yang et al. 2019), we
may prefer to have a lower recall (i.e., increasing the num-
ber of false negatives), in which case we maximize diversity,
as this gives us more attributes over which to integrate ex-
amples. Notice that, in these applications, an exceedingly
high recall is to be avoided as diversity would become too
low and there would be no new properties to be considered.
The choice of the context should be by the data scientist on
the basis of her domain knowledge.

Let us now consider the single etypes in Fig. 4. Here
the link between the results as from Fig. 4 and knowl-
ege lotuses (see in particular Fig. 3) becomes quite ex-
plicit, thus suggesting the pivotal role of knowledge metrics
(see the next subsection). Let us consider for instance the
OpenCyc and SUMO Organization etypes. These etypes
have, respectively, a huge and a small amount of contex-
tual properties not shared with the other contexts (201 and
12). Both OpenCyc-Organization and Sumo-Organization
share a small amount of quasi-rigid properties with the in-
put Schema.org context, but the amount of shared properties
in OpenCyc is more than double the amount of SUMO (12
vs. 5). Moreover, looking at Fig. 3(b) and (e) it is possi-
ble to observe that OpenCyc-Organization shares 58 out of
227 properties with the other etypes (i.e., about 25%) while
SUMO-Organization shares 5 out of 25 properties with the
other etypes (i.e., about 20%). This behavioural pattern oc-
curs with the other etypes as well. We can therefore derive
the following conclusions:
• the quasi-rigid properties of the reference context have a

positive impact on precision;
• a large number of properties in the reference context has

a positive effect on recall;
• the overlapping of properties across etypes in the refer-

ence context affects negatively both precision and recall,
by increasing the number of false positives and false neg-
atives;

• a high F1 score reflects both good precision and recall,
and indicates a good trade-off between quasi-rigid prop-
erties, total amount of properties and low level of overlap-
ping properties inside the reference context.

6.3 Context Determination
The goal here is to show how the results discussed above can
be correctly predicted by the metrics; and then, to analyze
the role of the metrics in the context determination step.

Let us start with Sect. 6.1. The contexts in Table 5
are ranked exactly by their Cuecr values in Table 7, where
Schema.org has the lowest Cuecr. Accordingly, the con-
clusion that can be drawn is that, under the assumption of
full coverage (here each context is tested against itself), the
higher is the level of contextuality the lower is the level of
confusion of contexts in their ability to recognize etypes.

Let us now consider Sect. 6.2. From the overall accu-
racy results reported in Fig. 4 we can observe that the best
reference context (Schema.org excluded) in the recognition
of the overall set of Schema.org etypes is OpenCyc. This is
mainly motivated by the fact that, as for the values reported
in Table 6, OpenCyc is the reference context that maximizes
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Context Person Organization Event Place
Cue ci Cue cri Cov ci Acc. Cue ei Cue eri Cov ci F1 Cue ei Cue eri Cov ci F1 Cue ei Cue eri Cov ci F1 Cue ei Cue eri Cov ci F1

SUMO 20 0.86 0.15 0.23 2.5 0.83 0.02 0.07 6 0.85 0.06 0.19 3.50 0,87 0.03 0.12 8.00 0.88 0.07 0.30
Dbpedia 39 0.68 0.30 0.39 19.33 0.77 0.20 0.55 6.83 0.68 0.08 0.08 4.00 0.50 0.06 0.22 8.83 0.63 0.11 0.18

OpenCyc 52 0.74 0.38 0.41 22.91 0.76 0.24 0.51 13.41 0.70 0.15 0.31 9.75 0.81 0.09 0.34 5.91 0.65 0.07 0.21
Schema 127 0.68 1.00 0.73 42.22 0.69 0.48 0.76 30.87 0.58 0.42 0.54 31.39 0.80 0.31 0.84 22.38 0.68 0.26 0.77

Table 6: Metrics and F1 Score for SUMO, DBpedia, OpenCyc, DBpedia, Schema.org, Schema.org(+) and SUMO+DBpedia.

Cuec Cueci Cuecr Cuecri

SUMO 235 20 0.96 0.86

DBpedia 427 39 0.92 0,68

OpenCyc 638 52 0.87 0.74

Schema 127 127 0.68 0.68

Table 7: Relativized and non-relativized context metrics

the unity with the input context (see its Covci score). No-
tice that OpenCyc is not the best context in the maximiza-
tion of diversity, but approaches the best (namely, SUMO,
see its Cuecri). This fact highlights a stronger impact by
Covci with respect to Cuecri, providing further evidence of
what already suggested by the data in Fig. 3, as discussed in
Sect. 6.2. The high accuracy of OpenCyc can also be further
explained by checking the Cov scores for each etype in Ta-
ble 6. The only etype for which OpenCyc is not the best is
Place, this being explained by the low Cueeri with respect to
SUMO (which has the same Covci). The suitability of each
context can be also checked at the level of etypes. Looking
at each F1 result reported in Fig. 4, we can notice that the
best performing etypes are those where the unity with the
input context is maximized. However, even when the input
is largely covered, a low level of diversity may lead to a de-
crease in performance, as in the case of Person-OpenCyc vs.
Person-DBpedia and Place-OpenCyc vs. Place-SUMO (see
Table 6).

The overall conclusion is that coverage Covci is the metric
which has the highest impact while the second most impor-
tant is Cuecri (and Cueeri). This indicates that the algorithm
for context determination implements the right strategy and
also the possibility to improve its performance via the eval-
uaton of the best trade-off between the maximization of the
unity and the maximization of diversity.

7 Related Work
This work builds upon the large amount of work done in
KR whose goal is the development of methodologies, tools,
and actual ontologies aimed at the solution of the seman-
tic heterogeneity problem, see, e.g., (Guarino and Welty
2002). The difference is in the approach. Following in
spirit the Teleosemantics approach (Macdonald, Papineau,
and others 2006), we believe that a general solution to the
problem of knowledge diversity can only be provided in
terms of a general process which adapts and evolves exist-
ing KBs based on the needs which appear in each and any
single task, e.g., of data or knowledge integration. The work
on Teleologies and iTelos (Giunchiglia and Fumagalli 2017;
Giunchiglia and Fumagalli 2019), together with the work
presented here, are first steps in this direction.

The work most similar in spirit is that on ontology match-
ing, which has been largely cited in the introduction. There
are however a few important differences. The most impor-

tant is that in our case there is a reference KB which is taken
as the ground truth. The alignment task is therefore not sym-
metric. This is the key intuition that allows us to exploit ma-
chine learning and, therefore all the huge amount of work
developed in the area of knowledge embeddings (Wang et
al. 2017). The results reported in Section 6.1, which could
not be found in a symmetric approach, provide evidence of
the advantages of the proposed approach.

Work on the problem of entity type recognition is de-
scribed in (Sleeman and Finin 2013; Sleeman, Finin, and
Joshi 2015). But, even if the problem is the same, moti-
vation and approach are completely different. In fact, this
work focuses on how to identify coreferent instances in het-
erogeneous semantic graphs where the underlying schemas
are too general and not informative enough, and possibly
even not known. The solution is based on the idea of ex-
ploiting the information codified in the instances populating
the knowledge graph.

The idea of modeling knowledge as a set of contexts was
independently proposed in (Giunchiglia 1993; Giunchiglia
and Serafini 1994) and in (McCarthy 1993). In particular
the idea of context proposed here is very similar to that de-
scribed in (Giunchiglia 1993), where a context is taken to
be that “subset of the complete state of an individual that
is used for reasoning about a given goal”. Work on mul-
ticontext systems, is also described in (Brewka et al. 2018)
where it is applied to reactive systems. But if the intuition
underlying the notion of context is the same, the technical
development in this earlier work is very different as it is the
overall goal of the research.

The notion of cue validity has been widely studied, to-
gether with other similar measures such as “mutual infor-
mation” and “category utility” with the general goal of mea-
suring the informativeness of a category (Peng, Long, and
Ding 2005), where these measures are pivotal in feature en-
gineering (Witten et al. 2016). The key difference, which
applies also to Rosch’s original definitions, is that our no-
tions apply at the knowledge level, on schemas, rather than
on data. In this perspective, the notion of coverage has no
equivalent in the data level metrics. This is a direct conse-
quence of the fact that, differently from data, knowledge is
designed to have general (re-)applicability and this is exactly
what cue and coverage have been designed for.

8 Conclusion
In this paper we have proposed a formal model and a visual
representation of knowledge, when it consists of a set of het-
erogeneous KBs. This in turn has allowed us to implement
entity type recognition as a multi-label classification prob-
lem applied to a set of reference KBs. The future work will
concentrate on a general methodology for re-using, adapting
and evolving the large number of existing high-quality KBs.
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