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Abstract

Recently there has been an increasing interest in probabilis-
tic abstract argumentation, an extension of Dung’s abstract
argumentation framework with probability theory. In this set-
ting, we address the problem of computing the probability
that a given argument is accepted. This is carried out by in-
troducing the concept of probabilistic explanation for a given
(probabilistic) extension. We show that the complexity of the
problem is FP#P-hard and propose polynomial approximation
algorithms with bounded additive error for probabilistic ar-
gumentation frameworks where odd-length cycles are forbid-
den. This is quite surprising since, as we show, such kind of
approximation algorithm does not exist for the related FP#P-
hard problem of computing the probability of the credulous
acceptance of an argument, even for the special class of argu-
mentation frameworks considered in the paper.

1 Introduction
Formal argumentation has emerged as one of the important
fields in Artificial Intelligence (Bench-Capon and Dunne
2007; Simari and Rahwan 2009; Atkinson et al. 2017). In
particular, an abstract Argumentation Framework (AF) is a
simple, yet powerful formalism for modelling disputes be-
tween two or more agents (Dung 1995). An AF consists of
a set of arguments and a binary attack relation over the set
of arguments that specifies the interactions between argu-
ments: intuitively, if argument a attacks argument b, then b
is acceptable only if a is not. Hence, arguments are abstract
entities whose role is entirely determined by the interactions
specified by the attack relation.

Recently, there has been an increasing interest in mod-
eling uncertainty in argumentation. This has been carried
out by combining probability theory with formal argumenta-
tion. One of the most popular approaches based on probabil-
ity theory for modeling the uncertainty is the so called con-
stellations approach (Dung and Thang 2010; Rienstra 2012;
Doder and Woltran 2014; Hunter 2012; Li, Oren, and Nor-
man 2011), where alternative scenarios, called possible
worlds, are associated with probabilities. In particular,
in a Probabilistic Argumentation Framework (PrAF) (Li,
Oren, and Norman 2011; Fazzinga, Flesca, and Parisi 2015;
Fazzinga, Flesca, and Parisi 2016; Fazzinga, Flesca, and
Furfaro 2019) a probability distribution function (PDF) on
the set of possible worlds is entailed by the probabilities that
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Figure 1: Probabilistic argumentation framework ∆ of Example 1.

are associated with arguments and attacks.
Example 1. Consider the PrAF ∆ = 〈{fish, meat, white,
red}, {(fish, meat), (meat, fish), (meat, white), (white,
red), (red, white)}, {fish/0.6, white/0.8}〉 whose cor-
responding graph is shown in Figure 1, where nodes and
edges represent arguments and attacks, respectively, and
probabilities different from 1 are specified nearby them.
For the sake of brevity, we do not specify the probabilities
of certain elements in ∆ (all the other elements different
from fish and white have probability 1). Intuitively,
∆ describes what a person is going to have for lunch as
follows. (S)he will have either fish or meat, and will drink
either white wine or red wine. However, if (s)he will have
meat, then (s)he will not drink white wine. Furthermore,
the probability that fish is available is 0.6, whereas that
that white wine is available is 0.8. 2

In this paper we do not address the problem of assigning
probabilities to arguments or attacks, as instead done e.g.
in (Hunter 2012; Hunter 2013), and assume they are given.

Several argumentation semantics—e.g. grounded (GR),
preferred (PR), stable (ST ), and semi-stable (SST )—have
been defined for AFs, leading to the characterization of S-
extensions, which intuitively consist of the sets of arguments
that can be collectively accepted under semantics S . Con-
sider for instance the deterministic version of the PrAF in
Example 1, obtained by assuming that all arguments are cer-
tain (i.e., they have probability 1). Considering the stable
semantics, the ST -extensions are E1 = {fish, white},
E2 = {fish, red}, and E3 = {meat, red}.

The semantics of a PrAF is given by considering all possi-
ble worlds (i.e., AFs) obtained by removing consistent sub-
sets of the probabilistic elements. Every possible world has
associated a probability value derived from the probabilities
of the elements that have been kept or removed. Moreover,
every possible world admits a set of S-extensions.
Example 2. Continuing with Example 1, the (non-zero
probability) possible worlds of ∆ are as follows, where for
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the sake of brevity, arguments are denoted by their initials:
• w1 = 〈{f, m, w, r}, {(f, m), (m, f), (m, w), (w, r), (r, w)}〉;
• w2 = 〈{f, m, r}, {(f, m), (m, f)}〉;
• w3 = 〈{m, w, r}, {(m, w), (w, r), (r, w)}〉;
• w4 = 〈{m, r}, {}〉.
For instance, w1 is the AF obtained from ∆ by keeping all
the arguments and attacks, while w2 is obtained from ∆ by
removing white and, consistently with this, the attacks to-
wards/from it. As it will be clear later, the probabilities of
w1, w2, w3, and w4 are 0.48, 0.12, 0.32, and 0.08.

Sincew1 coincides with the deterministic version of ∆, its
ST -extensions are E1, E2, and E3 given earlier. The ST -
extensions of w2 are E2 and E3, while w3 and w4 admit
only E3 as their stable extension. 2

An interesting problem recently investigated in the con-
text of probabilistic argumentation is probabilistic credulous
acceptance (Fazzinga, Flesca, and Furfaro 2018; Fazzinga,
Flesca, and Furfaro 2019): Given a probabilistic framework
∆, whose set of arguments is A, and a semantics S , com-
pute the probability PrCAS∆(g) that a goal argument g ∈ A
is credulously accepted, that is, there is a possible world w
of ∆ where g belongs to an S-extension of w. However, the
answer to this problem does not reflect our intuition of prob-
ability that a goal argument is accepted under a given seman-
tics. For instance, considering the PrAF ∆ of Figure 1, the
probability that meat is credulously accepted, under stable
semantics, is 1. This means that the person in our example
will surely have meat (since meat belongs to at least one
ST -extension of every world of ∆), whereas we expect that
the probability of acceptance of meat should be less than 1,
as in a possible world, the presence of multiple extensions is
an additional source of uncertainty, that one should take into
account.

To better grasp the issue behind the probability of cred-
ulous acceptance, consider the following AF (where all el-
ements are certain): ∆′ = 〈{fish, meat}, {(fish, meat),
(meat, fish)}〉 saying that fish and meat are mutually ex-
clusive. Again, the probability that a person will have meat
is 1, under probabilistic credulous acceptance, when con-
sidering the stable semantics, whereas we believe that the
expected answer should be 0.5.

With the aim of providing more intuitive answers for
probabilistic acceptance, in this paper we investigate a new
problem that we call Probabilistic Acceptance (denoted as
PrA[S]), i.e., given a PrAF ∆ and a goal argument g, com-
pute the probability that g is accepted under semantics S ∈
{GR, PR, ST , SST }. In our framework, acceptance still
relies on S-extensions but, differently from credulous accep-
tance, we get rid of the assumption that no uncertainty exists
at the level of the extensions of a world (i.e., an AF). In more
detail, PrA[S] implicitly assumes that a PDF over the set of
S-extensions of any AF (and thus of any possible world of
PrAF ∆) is defined. Thus, a concrete instance of PrA[S] is
obtained after defining such a PDF.

In this paper, we explore an instantiation of PrA[S] where
the PDF over the S-extensions of a world relies on the con-
cept of explanation. We call this problem Explanation-
based Probabilistic Acceptance, and denote it by PrEA[S].

General PrAFs PrAFs without odd cycles
FPRAS FPARAS FPRAS FPARAS

GR × X × X
PR × × × X
ST × × × X
SST × × × X

Table 1: Approximability of PrEA[S], depending on the seman-
tics S and on whether the input PrAF admits odd-length cycles.
Non-existence (resp., existence) of an FP(A)RAS is denoted with
× (resp., X), in the corresponding column.

Intuitively, an explanation for an S-extension E is a se-
quence of arguments occurring in E that ‘justify’ E. Ev-
ery explanation is associated with a probability entailed by
the possible choices that can be made. These choices must
be consistent with an ordering entailed by the strongly con-
nected components of the given AF, and they are used to
guide the construction of an extension. The sum of the
probabilities of the explanations for an extension E gives
the probability of E. Thus, we still assign to each possible
world w of ∆ a probability as in the standard way, but in
addition propose to distinguish among extensions of a given
world w by associating with them a probability based on ex-
planations.
Example 3. Continuing with Example 1, take for instance
the possible world w1 having probability 0.48. As shown
in Example 2, w1 has 3 ST -extensions, namely E1, E2 and
E3. As we shall see, in this case, for each extension there is
only one explanation. In particular, X1 = 〈fish, white〉 is
the explanation for E1. The intuition of explanation X1 is
that, considering that the AF consists of two strongly con-
nected components, we first choose fish (with probabil-
ity 1/2 as we can only choose between fish and meat)
in the first component and determine that meat cannot be-
long to the extension; then we choose white (with proba-
bility 1/2 as we can only choose between white and red)
in the second component, obtaining that X1 has probability
1/2 · 1/2 = 1/4. Analogously, X2 = 〈fish, red〉 is the
only explanation for E2 with probability 1/2 · 1/2 = 1/4.
Considering explanation X3 = 〈meat〉 for extension E3,
we have that we first choose meat with probability 1/2 as
it belongs to the first component, and we can only choose
between fish with meat. Next, since we determine that
fish and white cannot belong to the extension, whereas
red does, the probability of X3 turns out to be 1/2. Since
the probabilities ofX1, X2 andX3 are 1/4, 1/4 and 1/2, re-
spectively, the probabilities associated with E1, E2 and E3

in the world w1 are 1/4, 1/4 and 1/2, respectively. More-
over, since E1 is not an extension of any other possible
world, the probability ofE1 in ∆ is 1/4·0.48 = 0.12. In Ex-
ample 8, we will give the probabilities of the ST -extensions
of every possible world of the probabilistic AF ∆ of Exam-
ple 1, from which it turns out that the answer to PrEA[ST ]
for meat is 0.70, while that for fish is 0.30. 2

Contributions. In this paper we tackle a new problem that
we call Probabilistic Acceptance of an argument.
• We first formally define the problem of Probabilistic Ac-
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ceptance PrA[S], for some semantics S . Given a PrAF ∆
and an argument g, the problem asks the probability that
g is accepted in ∆, by means of some fixed PDF over the
S-extensions of the possible worlds of ∆.
• Then, we introduce our notion of explanation, and exploit

it to provide a PDF over the S-extensions of an AF. This
leads to an instantiation of PrA[S], dubbed PrEA[S].
• We then investigate the complexity of PrA[S], showing

that it is FP#P-hard for S ∈ {GR, PR, ST , SST }, even
for acyclic PrAFs and regardless of the way a PDF is de-
fined on S-extensions. This entails that PrEA[S] is as hard
as the problem of computing credulous acceptance (Fazz-
inga, Flesca, and Furfaro 2019).

• To deal with the intractability of PrA[S] (and of PrEA[S]),
we propose an additive approximation algorithm for
PrEA[S] for probabilistic AFs without odd-length cycles
and semantics S ∈ {GR,PR, ST , SST }, and an addi-
tive approximation algorithm for PrEA[GR] for general
PrAFs (without the restriction on odd-length cycles).

• We show that our approximation result is the best it can be
achieved (under standard theoretical assumptions), since
(i) no relative approximation algorithm exists for PrA[S]
(and thus for PrEA[S]) for S ∈ {GR,PR, ST , SST },
even considering acyclic PrAFs, and (ii) if we admit odd-
length cycles, then no additive approximation algorithm
exists for PrA[S] (and thus for PrEA[S]) with S ∈ {PR,
ST , SST } (i.e, it exists only for GR). Table 1 summa-
rizes our approximability results for PrEA[S].

• We experimentally show that our approximate algorithm
performs well in practice, even on large PrAFs obtained
from AFs used in the last International Competition on
Computational Models of Argumentation (ICCMA) 1.
It is worth noting that the existence of an approxima-

tion algorithm for PrEA[S] is quite surprising since—as we
show, as a side contribution—no approximation algorithm
of any kind (relative or additive) exists for the related prob-
lem of probabilistic credulous acceptance, even considering
restrictions on odd-length cycles.

2 Argumentation Frameworks
An abstract Argumentation Framework (AF) is a pair
〈A,Σ〉, where A is a set of arguments and Σ ⊆ A × A is
a set of attacks. An AF can be seen as a directed graph,
whose nodes represent arguments and edges represent at-
tacks; an attack (a, b) ∈ Σ from a to b is represented by
a → b. We shall use the notations a+ and a− for the sets
{b | (a, b) ∈ Σ} and {b | (b, a) ∈ Σ}, respectively. Further,
for any S ⊆ A, we denote as S+ and S− the sets

⋃
a∈S a

+

and
⋃
a∈S a

−, respectively.
Different argumentation semantics have been defined

leading to the characterization of collectively acceptable sets
of arguments, called extensions (Dung 1995).

Given an AF Λ = 〈A,Σ〉 and a set S ⊆ A of arguments,
an argument a ∈ A is said to be i) defeated w.r.t. S iff
∃b ∈ S such that (b, a) ∈ Σ, and ii) acceptable w.r.t. S iff
for every argument b ∈ A with (b, a) ∈ Σ, there is c ∈ S

1http://argumentationcompetition.org

such that (c, b) ∈ Σ. The sets of arguments defeated and
acceptable w.r.t. S are as follows (where Λ is understood):
• Def(S)={a ∈ A | ∃b ∈ S . (b, a) ∈ Σ};
• Acc(S)={a ∈A | ∀b ∈ A . (b, a) ∈ Σ ⇒ b ∈ Def(S)}.
Given an AF 〈A,Σ〉, a set S ⊆ A of arguments is said to
be conflict-free iff S ∩ Def(S) = ∅. Moreover, S ⊆ A
is said to be a complete extension iff it is conflict-free and
S = Acc(S). Given an AF 〈A,Σ〉, a complete extension
S ⊆ A is said to be:
• preferred (PR) iff it is maximal (w.r.t. ⊆);
• stable (ST ) iff it is a total preferred extension, i.e. a pre-

ferred extension such that S ∪Def(S) = A;
• semi-stable (SST ) iff it is a preferred extension with a

maximal set of decided elements, i.e. a preferred exten-
sion such that S ∪Def(S) is maximal;

• grounded (GR) iff it is minimal (w.r.t. ⊆).
The set of preferred (resp. stable, semi-stable, grounded)
extensions of an AF Λ will be denoted by PR(Λ) (resp.
ST (Λ), SST (Λ), GR(Λ)). In the following, whenever we
consider a generic semantics S , we refer to a semantics in
{GR,PR,ST ,SST }.
Example 4. Consider the AF Λ derived from the probabilis-
tic AF of Example 1, where all arguments are certain (Λ
coincides with the possible world w1 of Example 2). The
set of all complete extensions of Λ is {∅, {fish}, {red},
{fish, white}, {fish, red}, {meat, red}}. Thus,
PR(Λ) = ST (Λ) = SST (Λ) = {{fish, white},
{meat, red}, {fish, red}}, whereas GR(Λ) = {∅}. 2

Let Λ = 〈A,Σ〉 be an AF. A strongly connected compo-
nent (SCC) of Λ is a maximal subset C of A such that, for
every pair a, b ∈ C, there is a path2 from a to b in Λ. An
ordering of Λ is a sequence C1, . . . , Cn of all SCCs of Λ,
such that for each 1 ≤ i < j ≤ n, no argument in Cj at-
tacks arguments in Ci. An SCC C of Λ is initial w.r.t. a set
E ⊆ A if there is an ordering of Λ in which C is the first
SCC such that C ∩ E 6= ∅, We simply say that C is initial,
if no argument in A \ C attacks arguments in C.

For instance, the SCCs of the AF Λ of Example 4 are
{fish, meat} (which is initial) and {white, red}. Note
that, differently from the standard definition, we use SCC to
denote a set of nodes (i.e., arguments), not a subgraph.

In the following, given an AF Λ = 〈A,Σ〉 and a set S ⊆ A
of arguments, we define Λ↓S = 〈S,Σ ∩ (S × S)〉 as the
restriction of Λ to the set S.

3 Probabilistic Argumentation Frameworks
In general a probabilistic argumentation framework con-
sists of probabilistic arguments and probabilistic attacks (Li,
Oren, and Norman 2011; Fazzinga, Flesca, and Parisi 2015;
Fazzinga, Flesca, and Furfaro 2019). However, w.l.o.g.
we can focus on Probabilistic Argumentation Frameworks
(PrAFs) where only arguments are uncertain (and attacks are
certain, i.e., their probability is 1), since as shown in (Man-
tadelis and Bistarelli 2020) an argumentation framework

2If a = b, a path trivially exists.
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with probabilities on both arguments and attacks can be
transformed into an equivalent PrAF.

Definition 1. A Probabilistic Argumentation Framework
(PrAF) is a triple 〈A,Σ, P 〉 where 〈A,Σ〉 is an AF, and P
is a function assigning a non-zero probability value to every
argument in A, that is, P : A→ (0, 1].

Observe that assigning probability equal to 0 to arguments
is useless. Basically, the value assigned by P to any ar-
gument a represents the probability that a actually occurs.
Moreover, every attack (a, b) occurs with conditional prob-
ability 1, that is, a attacks b whenever both a and b occur.

The meaning of a PrAF is given in terms of possible
worlds. Formally, given a PrAF ∆ = 〈A,Σ, P 〉, a possi-
ble world of ∆ is an AF w = 〈A′,Σ′〉 such that A′ ⊆ A and
Σ′ = Σ ∩ (A′ ×A′). We use pw(∆) to denote the set of all
possible worlds of ∆.

Thus, an argument a ∈ A is viewed as a probabilistic
event which is independent from the other events associated
with other arguments b ∈ A (with b 6= a).

An interpretation for a PrAF ∆ = 〈A,Σ, P 〉 is a probabil-
ity distribution function I over the set pw(∆) of the possible
worlds. Each w = 〈A′,Σ′〉 ∈ pw(∆) is assigned by I the
probability

I(w) =
∏
a∈A

P (a) ·
∏

a∈A\A′
(1− P (a)).

Example 5. The (non-zero probability) possible worlds of
the PrAF ∆ of Example 1 are w1, w2, w3 and w4 given in
Example 2. Then, interpretation I is as follows:
I(w1) = P (fish) · P (white) = 0.6 · 0.8 = 0.48,
I(w2) = P (fish) · (1− P (white)) = 0.6 · 0.2 = 0.12,
I(w3) = (1− P (fish)) · P (white) = 0.4 · 0.8 = 0.32,
I(w4)=(1−P (fish)) · (1−P (white))= 0.4 · 0.2 = 0.08,
and I(w) = 0 for any other world w ∈ pw(∆). 2

A relevant problem in the field of formal argumentation is
that of credulous acceptance, that is checking whether a goal
argument g of an AF Λ is accepted under a given semantics
S , i.e. there exists an S-extension of Λ containing g.

The analogous problem in the context of a probabilistic
AF is the following.

Definition 2 (Probabilistic credulous acceptance). Given a
PrAF ∆, an argument g ∈ A, the probability PrCAS∆(g)
that g is credulously acceptable w.r.t S semantics is

PrCAS∆(g) =
∑

w ∈ pw(∆)∧
∃E ∈ S(w) s.t. g ∈ E

I(w).

The probability that an argument g is credulously ac-
cepted according to a semantics S is defined as the sum
of the probabilities of the possible worlds w of a PrAF ∆
for which argument g is credulously accepted. Comput-
ing PrCAS∆(g) is FP#P-hard for all semantics S ∈ {GR,
PR,ST ,SST } (Fazzinga, Flesca, and Furfaro 2018).

As discussed in the introduction, probabilistic credulous
acceptance does not express the probability that a given ar-
gument is accepted. Therefore, in this paper we study a new
problem, called Probabilistic Acceptance, which can be in-
tuitively stated as follows. Given a probabilistic framework

∆, a semantics S , and a goal argument g, compute the prob-
ability that g is accepted. However, differently from previ-
ously proposed probabilistic measures, considering a pos-
sible world w having probability I(w), under the given se-
mantics S , every extensionE ∈ S(w) has associated a prob-
ability Pr(E,w,S) so that

∑
E∈S(w) Pr(E,w,S) = 1 (the

sum of the probabilities of the S-extensions of w is equal to
1) and Pr(E,w,S) = 0 for all E 6∈ S(w). In more detail,
as stated next, we require a PDF over the set of extensions.
Definition 3 (Probabilistic Acceptance). Given a PrAF ∆ =
〈A,Σ, P 〉 and an argument g ∈ A, the probability PrAS∆(g)
that g is acceptable w.r.t. semantics S is

PrAS∆(g) =
∑

w ∈ pw(∆)∧
E ∈ S(w) ∧ g ∈ E

I(w) · Pr(E,w,S)

where Pr(·, w,S) is a PDF over the set S(w).
Our definition of probabilistic acceptance generalizes the

notion of (probablistic) credulous acceptance for determin-
istic AFs proposed in (Thimm 2012), where a PDF over the
set of S-extensions is assumed to be given. Besides consid-
ering PrAFs, we propose an approach based on explanations
which entails a PDF on the set of S-extensions of a PrAF.

4 Explanations
In this section, we present how the probability of an ex-
tension E for an AF Λ under semantics S (denoted as
Pr(E,Λ,S)) can be defined. Based on this, we obtain a
PDF over the set of S-extensions of every possible world w
of a PrAF that will be then used to provide a concrete instan-
tiation the probabilistic acceptance problem. It is important
to note that here we are proposing a way for defining such
a PDF, but other ways can be devised—our approach is not
meant to be the ultimate solution to the problem of defining
such a PDF, though we believe it is a reasonable one. For
instance, compared with the uniform distribution, the pro-
posed PDF is such that, as it will be clear in the following
(cf. Example 8), considering the AF obtained from the de-
terministic version of the PrAF in Figure 1 (i.e., world w1),
the probability of having one of the two mutually exclusive
arguments fish or meat (under stable/preferred/semi-stable
semantics) is the same and equal to 1/2. In contrast, con-
sidering the uniform distribution, the probability of having
fish (resp., meat) is 2/3 (resp., 1/3). Moreover, as stated in
Theorem 4, the proposed PDF based on explanations allows
us to obtain a tractable sampling strategy.

To define Pr(E,Λ,S) we introduce the concept of ex-
planation consisting of a sequence of necessary sugges-
tions useful to construct a given extension E, that is a se-
quence of choices made to obtain the extension. In par-
ticular, the choices we consider are guided by an ordering
entailed by strongly connected components (SCCs) of an
AF. In fact, SCCs have been exploited in several approaches
in argumentation since they are inherently related to intu-
itive properties of AFs (Baroni, Giacomin, and Guida 2005;
Cerutti et al. 2014; Baroni et al. 2014; Rienstra et al. 2018).

Given an AF Λ = 〈A,Σ〉 and its grounded extension G ∈
GR(Λ), we use Λ̂ to denote Λ without G and G+, i.e., the
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AF Λ↓A\(G∪G+). Moreover, for an argument a ∈ A, we use
Λ̂a to denote Λ without G,G+ and the attackers of a, i.e.,
the AF Λ↓A\(G∪G+∪{a}−).

An explanation for a given extension is defined as follows.

Definition 4 (Explanation). Let Λ = 〈A,Σ〉 be an AF, and
E an S-extension of Λ, for some semantics S . A sequence
X = 〈a1, . . . , an〉 of arguments in E is an explanation for
E (w.r.t. Λ), if either X is empty and E ∈ GR(Λ), or

i) a1 belongs to some initial SCC of Λ̂ w.r.t. E, and

ii) 〈a2, . . . , an〉 is an explanation for E \ GR(Λ) w.r.t Λ̂a1
.

Intuitively, an explanationX for an S-extensionE of Λ is
recursively defined as a sequence of chosen arguments such
that i) every argument belongs to E, and ii) every argument
choice is not trivial, in the sense that arguments can be cho-
sen only among those belonging to an initial SCC of a re-
stricted AF obtained by removing arguments determined by
the grounded semantics (and by previous choices). Basi-
cally, such an initial SCC consists of arguments whose ac-
ceptance status cannot be determined on the basis of the ac-
ceptance status of arguments determined so far. It is worth
noting that the definition entails that an explanation X of E
is such that there is no explanationX ′ ofE which is a proper
prefix of X . Moreover, for the grounded semantics, which
admits a unique extension, there exists a unique explanation
which is the empty sequence 〈〉.
Example 6. Continuing with Example 4, we have that
for the stable extension E1 = {fish, white} of Λ there
is only one explanations X1 = 〈fish, white〉. In fact,
since the grounded extension G of Λ is empty, it does
not help to determine any argument of the initial AF, i.e.,
Λ̂ = Λ, and fish can be chosen in the initial SCC
of Λ̂ w.r.t. E1 (which coincides with the initial SCC of
Λ̂). Next, we look for an explanation for {fish, white}
w.r.t Λ̂fish = 〈{fish, white, red}, {(white, red), (red,
white)}〉, where the attackers of fish have been removed
(no other argument is removed sinceG = ∅). Now, since the
grounded extension of Λ̂fish consists of fish only, we con-
sider the AF Λ′ obtained from Λ̂fish by removing fish (no
argument is attacked by fish in the current AF). Then, the
initial SCC of Λ′ w.r.t. {fish, white} is {white, red}, and
the only argument of our extension that we can choose from
this SCC is white. Thus, we end up with the AF Λ′′ ob-
tained from Λ′ by removing the attackers of white, and the
set {white}, which is the grounded extension of Λ′′. Hence,
X1 = 〈fish, white〉 is an explanation of {fish, white}.

Consider now explanation X3 = 〈meat〉 for the stable
extension E3 = {meat, red}. Herein, Λ̂ = Λ as said
earlier, and meat can be chosen in the initial SCC of Λ̂
w.r.t. E3 (which again coincides with the initial SCC). Next,
we look for an explanation for {meat, red} w.r.t Λ̂meat =
〈{meat, white, red}, {(meat, white), (white, red), (red,
white)}〉, where the attackers of meat have been removed.
Now, since the grounded extension of Λ̂meat is {meat, red},
we conclude that X3 = 〈meat〉 is an explanation for E3. 2

Proposition 1. Let Λ = 〈A,Σ〉 be an AF, S a semantics,
and X = 〈a1, . . . , an〉 an explanation for some S-extension
of Λ. Then, i) there exists a unique extension in S(Λ) for
which X is an explanation and ii) for each S-extension E of
Λ there always exists at least one explanation for E.

Proof. (Sketch) For S = GR, the claim follows by Defi-
nition 4. It suffices to prove the claim for S = PR. We
can show that (*) for an AF Λ, a preferred extension E of
Λ, and for any argument a ∈ E belonging to some initial
SCC of Λ̂ w.r.t. E, then E \ G is a preferred extension of
Λ̂a, where G ∈ GR(Λ). Moreover, if no initial SCC of Λ̂
w.r.t. E exists, then E ∈ GR(Λ).

With the above, to prove i) suffices to note that any two
preferred extensions E1, E2, explained by some X , always
get removed a set of arguments which is common to both, at
each recursive step of Definition 4 (i.e., the set G ∈ GR(Λ),
by claim (*)). Moreover, at the last step, sinceX is an expla-
nation of both E1 and E2 w.r.t. Λ, both extensions necessar-
ily coincide with the grounded extension, and thusE1 = E2.
For proving ii), it suffices to note that Definition 4 naturally
induces a recursive procedure for constructing a sequenceX
of arguments, starting from a preferred extension E of some
AF Λ. The constructed sequence X is an explanation of E
as at the last recursive step of Definition 4, no initial SCC of
the remaining AF w.r.t. the remaining extension exists, and
by claim (*), it follows that the remaining extension is the
grounded extension of the remaining AF.

In the following, the set of explanations for an S-
extension E of an AF Λ is denoted by ExpSΛ(E). We as-
sume that whenever S 6∈ S(Λ), ExpSΛ(S) = ∅. Moreover,
ExpS(Λ) =

⋃
E∈S(Λ)Exp

S
Λ(E) is the set of explanations

of AF Λ under semantics S .
Since a given extension may have multiple explanations

of different length, it is reasonable to assume that some ex-
planations are preferred to others. We now introduce prob-
abilities for explanations. As said before, the grounded se-
mantics has a unique explanation which has probability 1.
To define probabilities of explanations, we exploit the con-
cept of probabilistic trie.

Definition 5. Given an AF Λ and a semantics S , the prob-
abilistic trie for Λ under semantics S is the triple T SΛ =
〈N,H, π〉 of nodes N and edges H where 〈N,H〉 is the trie
of all sequences in ExpS(Λ), and π : N → (0, 1] is the
function inductively defined as follows:

• π(〈〉) = 1,
• π(x) = π(parent(x)) · 1/|children(parent(x))|,
where parent(x) denotes the parent of x, whereas
|children(x)| denotes the number of children of x.

Since the set of leaves of the probabilistic trie T SΛ =
〈N,H, π〉 coincides with ExpS(Λ), hereafter, with a lit-
tle abuse of notation, we assume that π is a function from
ExpS(Λ) to (0, 1].

As defined next, the probability that a set S of arguments
is an S-extension of an AF Λ is given by the sum of the
probabilities of the explanations for S under semantics S .
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Figure 2: Probabilistic trie for the AF Λ of Example 4 under
preferred/stable/semi-stable semantics.

Definition 6. Given an AF Λ = 〈A,Σ〉, a semantics S , and
a set of arguments S ⊆ A, then Pr(S,Λ,S) =

∑
X∈ExpSΛ(S)

π(X).

Observe that Pr(S,Λ,S) = 0 whenever S is not an S-
extension of Λ. With a little effort, it can be checked that
function Pr(·,Λ,S) of Definition 6 is a PDF over the set of
S-extensions of Λ. Therefore, we define PrEAS∆(g) as the
probability obtained using such a PDF in Definition 3. That
is, we have obtained an instantiation of our Probabilistic Ac-
ceptance problem, that we call Explanation-based Proba-
bilistic Acceptance problem, whose output is PrEAS∆(g).

Example 7. Let Λ be the AF of Example 4. The expla-
nations for the preferred (stable and semi-stable) extensions
are represented by the leaf nodes of the trie shown in Fig.
2 (where arguments are denoted by their initials). For in-
stance, the probability of explanation 〈f, w〉 for extension
E1 = {f, w} (cf. Example 6) is 1/4. Therefore the prob-
ability of E1 is 1/4. 2

Example 8. Consider the PrAF ∆ of Example 1. As shown
in Example 2, for ∆ there are four (non-zero probability)
possible worlds whose probabilities are given in Example 5.

Let E1 = {f, w}, E2 = {f, r} and E3 = {m, r}. We
have that ST (w1) = {E1, E2, E3}, ST (w2) = {E2, E3},
ST (w3) = {E3}, and ST (w4) = {E3}. The following
table reports for each world w the probability I(w) (second
column) and, for each pair 〈world w, stable extension E〉,
the probability Pr(E,w,ST ) w.r.t. the AF w (last three
columns). Finally, the last row of the table reports, for each
setE, the probability thatE is an ST -extension of the PrAF
∆, defined for a semantics S as

∑
w∈pw(∆)

I(w)·Pr(E,w,S).

E1 = {f, w} E2 = {f, r} E3 = {m, r}
w I(w) Pr(E,w,ST) Pr(E,w,ST) Pr(E,w,ST)

w1 0.48 1/4 1/4 1/2
w2 0.12 0 1/2 1/2
w3 0.32 0 0 1
w4 0.08 0 0 1

0.12 0.18 0.70

Using Definition 3, the probability of acceptance of a goal
argument in ∆ is as follows. PrEAST∆ (fish) = 0.48 ×
1/4+0.48×1/4+0.12×1/2 = 0.30, PrEAST∆ (meat) =
0.48 × 1/2 + 0.12 × 1/2 + 0.32 × 1 + 0.08 × 1 =
0.70. Similarly, we obtain PrEAST∆ (white) = 0.12 and
PrEAST∆ (red) = 0.88.

5 Exact and Approximate Complexity
This section discusses the complexity of the following prob-
lems; S is a semantics in {GR,PR,ST ,SST }.

PROBLEM : PrA[S]
INPUT : A PrAF ∆ and an argument g.
OUTPUT : The number PrAS∆(g).

PROBLEM : PrEA[S]
INPUT : A PrAF ∆ and an argument g.
OUTPUT : The number PrEAS∆(g).

We recall that PrA[S] is defined after choosing an arbitrary
but fixed PDF over the set of extensions of an AF, while
PrEA[S] uses the specific PDF Pr(·,Λ,S) of Definition 6.

We show that for all semantics, the above problems are
intractable. In particular, we show that PrA[S] is FP#P-hard,
regardless of the chosen PDF, from which it follows that
PrEA[S] is FP#P-hard as well.

Theorem 1. For S ∈ {GR, PR, ST , SST }, PrA[S] is
FP#P-hard, even for acyclic PrAFs and for any chosen PDF.

Proof. (Sketch) We reduce from the FP#P-hard problem
#P2CNF (Welsh and Gale 2001) of counting the number of
satisfying assignments #φ of a CNF formula φ, where each
clause consists of exactly 2 positive literals.

Let φ = C1 ∧ C2 ∧ · · · ∧ Ck be a P2CNF and X the
set of its n propositional variables. We define the (acyclic)
PrAF ∆ = 〈A,Σ, P 〉 as follows. The set A contains an
argument ax for each x ∈ X; an argument ci for each clause
Ci; and an argument ϕ. Function P assigns probability 1

2
to arguments ax, ∀x ∈ X , and 1 otherwise. Relation Σ
contains, for each clause Ci = x ∨ y, an attack (ci, ϕ), and
two attacks (ax, ci) and (ay, ci). Finally, we let the goal
argument be ϕ.

We can show that there is a bijection between the truth
assignments of φ and the worlds of ∆. Moreover, since the
PrAF ∆ = 〈A,Σ, P 〉 is acyclic, every AF w ∈ pw(∆) is
acyclic. Thus the grounded extension of w is its unique S-
extension, and any PDF Pr(·, w,S) trivially assigns 1 to
that extension. Finally, for each world w of ∆, ϕ belongs
to the (only) S-extension of w iff the corresponding truth
assignment satisfies φ. Hence, #φ = 2n · PrAS∆(ϕ), and
the claim follows.

The high computational complexity of PrA[S] (and thus
of PrEA[S]), for all semantics S , even for very simple set-
tings, such as acyclic PrAFs, suggests that one would need to
focus on finding efficient algorithms that solve the problem
approximately. Next, we present a complete picture of the
approximability landscape of our problems, under different
semantics and approximation schemes.

We start by defining the kind of approximation schemes
we are going to target.

Definition 7 ((Arora and Barak 2009)). Consider a func-
tion f : {0, 1}∗ → Q. A fully polynomial-time randomized
approximation scheme (FPRAS) for f is a randomized algo-
rithm A that given as input x ∈ {0, 1}∗, and numbers ε > 0,
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0 < δ < 1, outputs a random variable A(x, ε, δ) such that:

Pr (|A(x, ε, δ)− f(x)| ≤ ε · f(x)) ≥ 1− δ,
and A runs in polynomial time in |x|, 1/ε, and ln(1/δ).

Similarly, we can define the notion of additive FPRAS.
A fully polynomial-time additive randomized approximation
scheme (FPARAS) for a function f is defined as in Defini-
tion 7, where the inequality |A(x, ε, δ)− f(x)| ≤ ε · f(x) is
replaced with |A(x, ε, δ)− f(x)| ≤ ε.

5.1 Inapproximability Results
We start by discussing inapproximability results for PrA[S]
(and PrEA[S]) in the FP(A)RAS sense.

For this, we need to recall the class of decision prob-
lems BPP. A decision problem Π is in BPP iff there ex-
ists a polynomial-time randomized decision procedure A
such that, for every instance x ∈ {0, 1}∗ of Π, if x is a
yes (resp., no) instance of Π, then Pr(A(x) = yes) (resp.,
Pr(A(x) = no)) is greater than or equal to 2/3. It is known
that NP ⊆ BPP implies that the polynomial-time hierarchy
collapses (Ko 1982).
Theorem 2. Consider a semantics S ∈ {GR, PR, ST ,
SST }. Unless NP ⊆ BPP, there is no FPRAS for PrA[S],
even for acyclic PrAFs and for any chosen PDF.

Proof. (Sketch) The claim follows from the fact that the
reduction in the proof of Theorem 1 is from the problem
#P2CNF, which has no FPRAS (unless NP ⊆ BPP) (Welsh
and Gale 2001), and that the constructed PrAF ∆ and goal ϕ
are such that PrAS∆(ϕ) equals the number of satisfying as-
signments of the formula, modulo a multiplying factor.

Next, we show that for all semantics except for GR, even
approximation algorithms with bounded additive error can-
not be devised, for PrAFs of general shape. For the proof,
we rely on a technical lemma that shows a certain gap prop-
erty of the problem of credulously accepting an argument.
We first introduce some notions.

We say that a pair (Λ, g) of an AF Λ and argument g is S-
uniform, for a semantics S , if the existence of an extension
E ∈ S(Λ), such that g ∈ E, implies that every extension
E ∈ S is such that g ∈ E.3

Let us now consider the following restriction of the clas-
sical credulous acceptance problem, where S is a semantics.

PROBLEM : UnCA[S]
INPUT : An S-uniform pair (Λ, g).
QUESTION : Is there E ∈ S(Λ) such that g ∈ E?

We show that even when restricting our attention to S-
uniform pairs of AFs and arguments, credulous acceptance
is NP-hard, for all semantics in {PR, ST , SST }. The re-
sult is proved by providing a reduction from 3SAT by ex-
ploiting and adapting the construction (of an AF Λ) known
in the literature for the credulous acceptance (Dunne and
Bench-Capon 2002). Particularly, we prove that Λ has ex-
clusively non-empty S-extensions if the given formula is sat-
isfiable, and exclusively empty S-extensions otherwise.

3In other words, when a pair (Λ, g) is S-uniform, then credu-
lous and skeptical acceptance of g over Λ coincide.

Algorithm 1 Apx

Require: A PrAF ∆ = 〈A,Σ, P 〉, a semantics S , a goal
argument g ∈ A, error parameter ε > 0, and uncertainty
parameter 0 < δ < 1.

Ensure: a random number p such that
PrEAS∆(g) ∈ [p−ε, p+ε] with probability 1− δ.

1: n := d 1
2ε2 × ln( 2

δ )e;
2: c := 0;
3: for i ∈ {1, . . . , n} do
4: Choose w ∈ pw(∆) with probability I(w);
5: Choose E ∈ S(w) with probability Pr(E,w,S);
6: if g ∈ E then
7: c := c+ 1;
8: return c

n ;

Lemma 1. For each S ∈ {PR, ST , SST }, UnCA[S] is
NP-hard.

We can now exploit the above lemma to prove our inap-
proximability result.

Theorem 3. Let S ∈ {PR, ST , SST }. Unless NP ⊆ BPP,
there is no FPARAS for PrA[S], for any chosen PDF.

Proof. (Sketch). The main idea is to show that for S-
uniform pairs (Λ, g), one can always construct a PrAF ∆
from Λ such that if (Λ, g) is a “yes” instance of UnCA[S],
then PrAS∆(g) = 1, and if (Λ, g) is a “no” instance,
PrAS∆(g) = 0. Thus, by setting ε to be a sufficiently small
error, an FPARAS for PrA[S] can be used to distinguish be-
tween “yes” and “no” instances of an NP-hard problem (i.e.,
UnCA[S]) with high probability, and in polynomial time.
The latter implies NP ⊆ BPP.

Theorems 1, 2, and 3 rule out the existence of polynomial-
time algorithms for solving PrA[S]. In terms of exact and
approximate computation via FPRASes, this is not possible
even for acyclic PrAFs, whereas in terms of approximate
computation via FPARASes, this is not possible for general
PrAFs and for all semantics, besides GR. Notably, our re-
sults highlight an intrinsic difficulty in providing efficient
procedures (either exact or approximate) for any approach
assigning a probability to an argument by means of a proba-
bility distribution over the extensions.

From the above discussion, it is clear that our efforts
should be towards approximation schemes with bounded ad-
ditive error guarantees, i.e., FPARASes. In particular, in the
light of Theorem 3, one could still provide an FPARAS ei-
ther when S = GR, or when some restriction on the input
PrAF is assumed. In fact, we are going to show that either
when S = GR or when the input PrAF has no odd-length
cycles, the use of explanations for devising a PDF over ex-
tensions allows us to construct an FPARAS.

5.2 Devising an FPARAS
We report an FPARAS for the problem PrEA[S], when ei-
ther S = GR or the input PrAF has no odd-length cycles.
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The general structure of our algorithm is presented in Al-
gorithm 1. Consider a PrAF ∆, a semantics S and an argu-
ment g. The high-level idea is to perform a number of itera-
tions n, and at each iteration sample a world w of ∆ and an
explanation X in ExpS(w), and count the fraction of itera-
tions for which the given argument g is in the S-extension
E explained by X .

We point out that, besides line 5, all steps of our algorithm
can be easily implemented in polynomial time regardless of
the shape of the input PrAF and the semantics. Particularly,
to prove that Algorithm 1 leads to an FPARAS in the cases
described above, it suffices to prove that i) line 5 can be im-
plemented in polynomial time when either S = GR or ∆
has no odd-length cycles. This is done via Algorithm 2, and
ii) Algorithm 1 enjoys the probabilistic and error guarantees
of an FPARAS (this can be proved via standard probabilis-
tic inequalities (Hoeffding 1963)). We first show that Algo-
rithm 2 efficiently implements line 5 of Algorithm 1.
Theorem 4. Algorithm 2 with input an AF Λ and a seman-
tics S ∈ {GR,PR,ST ,SST } is such that:

• For each E ∈ S(Λ), it outputs E with probability
Pr(E,Λ,S), and
• it runs in polynomial time,

whenever i) S = GR, or ii) Λ has no odd-length cycles.

Proof. (Sketch). The algorithm runs in polynomial time as
the number of iterations is linear in the number of arguments
and each iteration performs polynomial time operations.
When S = GR the claim follows trivially, as E = GR(Λ)
is the grounded extension of Λ. Otherwise, considering AFs
Λ without odd-length cycles, we focus w.l.o.g. on the case
S = ST . We can show that every argument of every ini-
tial SCC of Λ̂ belongs to some stable extension of Λ̂, and
hence of Λ, and every stable extension of Λ contains at least
one argument of every initial SCC of Λ̂. The probability
of outputting an extension E coincides with the probabil-
ity of choosing an argument for each execution of the cycle,
which form an explanation X for E w.r.t. Λ whose proba-
bility coincides with the value associated with the leaf node
corresponding to X in the probabilistic trie T STΛ .

By exploiting the above result, and standard probabilistic
inequalities (Hoeffding 1963), we can prove our main ap-
proximability result.
Theorem 5. Consider a semantics S ∈ {GR, PR, ST ,
SST }. The problem PrEA[S] has an FPARAS if either i)
S = GR, or ii) the input PrAF has no odd cycles.

6 Inapproximability For Previous
Approaches

In this section, we consider the problem of Probabilistic
Credulous Acceptance known from the literature. That is,
for a semantics S , we consider the problem:

PROBLEM : PrCA[S]
INPUT : A PrAF ∆ and an argument g.
OUTPUT : The number PrCAS∆(g).

Algorithm 2
Require: An AF Λ = 〈A,Σ〉 and a semantics S .
Ensure: An S-extension E.

1: Let E ∈ GR(Λ)
2: while E is not an S-extension of Λ do
3: Let C be the union of initial SCCs of Λ̂;
4: Choose a ∈ C with probability 1

|C| ;

5: E := E ∪ E′ s.t. E′ ∈ GR(Λ̂a);
6: Λ := Λ̂a;
7: return E

It is known that PrCA[S] is FP#P-hard (Fazzinga, Flesca,
and Furfaro 2018), and this holds even for acyclic PrAFs.
Moreover, with the same argument given for Theorem 2, we
can also show that PrCA[S] admits no FPRAS, for all se-
mantics S .
Theorem 6. Consider a semantics S ∈ {GR, PR, ST ,
SST }. Unless NP ⊆ BPP, there is no FPRAS for PrCA[S],
even for acyclic PrAFs.

The main difference with PrEA[S] lies in the approx-
imability via FPARASes. In particular, we can show that
PrCA[S] is harder than PrEA[S] in this regard, as no
FPARAS exists, for all semantics S ∈ {PR,ST ,ST T },
even when PrAFs have no odd-length cycles.

For the proof of this theorem, we use the fact that check-
ing whether a given argument g is credulously accepted over
an AF Λ is NP-hard, when S ∈ {PR,ST ,SST }, even
when AFs have no odd-length cycles (Simari and Rahwan
2009). With this in place, it is easy to apply a similar argu-
ment to the one given in the proof of Theorem 3.
Theorem 7. Consider a semantics S ∈ {PR, ST , SST }.
UnlessNP ⊆ BPP , there is no FPARAS for PrCA[S], even
for PrAFs without odd-length cycles.

The above result highlights an additional difficulty in ap-
proximating PrCA[S] w.r.t. PrEA[S], since Theorem 5 states
that an FPARAS for PrEA[S] exists for S ∈ {PR, ST ,
SST }, when we consider PrAFs without odd-length cycles.

The only positive result one can obtain for the problem
PrCA[S] is when S = GR. In this case, PrEA[S] =
PrCA[S], and thus the following is a corollary of Theorem 5.
Corollary 1. The problem PrCA[GR] admits an FPARAS.

7 Experimental Analysis
We implemented a Python prototype of Algorithm 1 for ap-
proximating PrEA[S], and tested it over the dataset used dur-
ing the last ICCMA competition. The dataset consists of
326 AFs having a number of arguments in [4, 10K] and a
number of attacks in [8, 1M ]. For each AF in the dataset,
each odd-length cycle was broken by randomly removing
an attack until an AF having no odd-length cycles was ob-
tained. The resulting AF has been transformed into a PrAF
by randomly assigning a probability to every argument. For
each PrAF, we have chosen five distinct goal arguments, and
executed our implementation with ε = δ = 5%, for each
semantics S ∈ {GR, PR, ST , SST }.
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Figure 3: Running time of Apx versus the number of attacks.

Figure 3 reports the running time of our implementation
versus the number of attacks of each PrAF, for the grounded
semantics (red circles) and preferred/stable/semi-stable se-
mantics (blue triangles), that coincide for AFs without odd-
length cycles. Each data point refers to the mean of 25 runs.
For the sake of readability, LOESS regression is also shown.

The experiments show that the running time depends al-
most linearly on the number of attacks of the input PrAF.
Further experiments showed that the running time increases
quadratically (resp., logarithmically) as ε (resp., δ) de-
creases, confirming the theoretical behavior of our algo-
rithm, where ε and δ define the number of iterations.

Figure 3 also shows that the running time for the grounded
semantics is lower than those for the other semantics. This is
due to the fact that the execution of line 5 of Algorithm 1 is
faster for GR, as under GR, only one extension exists, which
has probability 1. However, the running time for the other
semantics is not much higher than that for the grounded se-
mantics: it is only 5.53 times that of the grounded semantics,
on average. This is due to the fact that most of the PrAFs
have a very large SCC containing 85% of the arguments
on average, and thus the probabilistic trie of a world is not
very deep. Overall, the experiments show that our approx-
imation algorithm performs well on quite large PrAFs—for
PrAFs having up to 10K attacks (almost 60% of PrAFs in
the dataset), execution ends in less than 1 second (see the
dotted line on Figure 3).

8 Conclusions and Future Work
We have explored the problem of Probability of Acceptance
of a goal argument in probabilistic argumentation frame-
works. Our approach steams from the fact that, in our view,
Probabilistic Credulous Acceptance may not provide intu-
itive answers as it generalizes the classical credulous accep-
tance problem for AFs in one dimension only, that is, via
probabilities over possible worlds. Our approach considers
also another dimension, i.e, assigns probabilities also to the
extensions of each possible world. As shown in our running
example, this enables more intuitive answers, e.g. the proba-
bilities of acceptance of mutually conflicting arguments (e.g.
fish and meat) sum up to 1 (this is not the case for Prob-
abilistic Credulous Acceptance). Thus, we introduced the
problem PrA[S], where a PDF is assumed over the set of ex-
tensions, and devised PrEA[S] as a concrete instance, where
the PDF leverages our notion of explanations for extensions.

Integrating explanations in argumentation systems is im-
portant for enhancing the argumentation and persuasion ca-
pabilities of software agents (Moulin et al. 2002; Bex and
Walton 2016; Cyras et al. 2019; Miller 2019). For this rea-
sons, several researchers explored how to deal with expla-
nations in formal argumentation. Significant work in this
field includes (Fan and Toni 2015), where a new argumenta-
tion semantics is proposed for capturing explanations in AF,
and (Craven and Toni 2016) that focuses on ABA frame-
work (Dung, Kowalski, and Toni 2009). They treat an ex-
planation as a semantics to answer why an argument is ac-
cepted or not. Thus, an explanation is viewed as a set of
arguments, instead of a sequence of arguments, needed for
explaining such an extension. In (Fan and Toni 2015) an
explanation is as a set of arguments justifying a given argu-
ment by means of a proponent-opponent dispute-tree (Dung,
Mancarella, and Toni 2007). A similar approach based on
debate trees as proof procedure for computing grounded,
ideal, and preferred semantics, has been proposed in (Thang,
Dung, and Hung 2009). However, in our perspective, expla-
nations provide a tool to assign probabilities to extensions,
and an explanation can be viewed as a sequence of choices
to be made to justify how an extension is obtained.

Analogously to several other computational approaches
in formal argumentation, our approach suffers from high
computational complexity (Dunne and Wooldridge 2009;
Dvorák and Woltran 2010; Dvorák et al. 2014; Kröll, Pich-
ler, and Woltran 2017; Alfano, Greco, and Parisi 2017;
Alfano, Greco, and Parisi 2018; Alfano et al. 2018; Alfano,
Greco, and Parisi 2019a; Alfano, Greco, and Parisi 2019b;
Alfano et al. 2020). However, after showing that PrA[S]
and PrEA[S] are FP#P-hard, even for acyclic PrAFs, we
investigated the existence of polynomial-time algorithms
for PrEA[S] in terms of approximate computation via
FP(A)RASes. This is analogous to what done in (Fazzinga,
Flesca, and Parisi 2016; Fazzinga, Flesca, and Parisi 2016),
where Monte-Carlo techniques are proposed to estimate the
probability that a set of arguments is an extension in proba-
bilistic AFs and structured argumentation frameworks.

We also found that approximate computation via
FPARASes is not possible for general PrAFs and for all
the considered semantics, besides the grounded. Thus, we
proposed an additive approximation algorithm for solving
PrEA[S] in all the cases where it exists: probabilistic AFs
without odd-length cycles and any semantics S , and for
PrEA[GR] in general PrAFs. Our results immediately apply
to probabilistic frameworks with uncertain attacks, thanks to
the results of (Mantadelis and Bistarelli 2020).

To the best of our knowledge, this is the first piece of work
investigating probabilistic acceptance in combination with
explanations for probabilistic AFs. As a first direction for
future work, we plan to extend our notion of explanation,
and investigate the counterparts of our problems, in the con-
text of structured argumentation, such as p-ASPIC (Rienstra
2012), a probabilistic version of a general fragment of AS-
PIC (Prakken 2010). As a second direction, we plan to in-
vestigate other ways of defining a PDF over the set of exten-
sions which enable other instantiations of PrA[S], not nec-
essary defined using explanations.
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