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Abstract

Computation Tree Logic (CTL) is one of the central for-
malisms in formal verification. As a specification language,
it is used to express a property that the system at hand is ex-
pected to satisfy. From both the verification and the system
design points of view, some information content of such prop-
erty might become irrelevant for the system due to various
reasons, e.g., it might become obsolete by time, or perhaps in-
feasible due to practical difficulties. Then, the problem arises
on how to subtract such piece of information without altering
the relevant system behaviour or violating the existing speci-
fications over a given signature. Moreover, in such a scenario,
two crucial notions are informative: the strongest necessary
condition (SNC) and the weakest sufficient condition (WSC)
of a given property. To address such a scenario in a princi-
pled way, we introduce a forgetting-based approach in CTL
and show that it can be used to compute SNC and WSC of a
property under a given model and over a given signature. We
study its theoretical properties and also show that our notion
of forgetting satisfies existing essential postulates of knowl-
edge forgetting. Furthermore, we analyse the computational
complexity of some basic reasoning tasks for the fragment
CTLAF in particular.

1 Introduction
Computation Tree Logic (CTL) (Clarke and Emerson 1981)
is one of the central formalisms in formal verification. As
a specification language, it is used to express a property
that the system at hand is expected to satisfy. From both
the verification and the system design points of view, there
might be situations in which some information content of
such property might become irrelevant for the system due to
various reasons e.g., it might be discarded or become obso-
lete by time, or just become infeasible due to practical diffi-
culties. As keeping such information would be highly space-
inefficient, the problem arises on how to remove it without
altering the relevant system behaviour or violating the exist-
ing system specifications over a given signature. Consider
the following example.
Example 1 (Car-Manufacturing Company). Assume a car-
manufacturing company which produces two types of cars:
a (se)dan car and a (sp)orts car. In each manufacturing
cycle, the company has to (s)elect one of the three options:

∗Corresponding author(s).

Figure 1: Car Engine Manufacturing Scenario

(1) produce se first, and then sp; (2) produce sp first, and
then se; (3) produce se and sp at the same time. At the end
of each selection, a final (d)ecision is taken.

In Figure 1, this scenario is represented by the Kripke
structureM = (S,R,L) with the initial state s0 (called la-
belled state transition graph), and the corresponding atomic
variables V = {d, s, se, sp}.

Now assume a situation in which due to some problems
(e.g., economic crises or new environmental regulations on
the engine technology) company can no longer support the
production of sports cars. This means, all the manufacturing
processes concerning sp are no more necessary and should
be dropped from both the specifications and the Kripke
structure for simplification.

Similar scenarios like the one presented in Example 1 may
arise in many different domains such as business-process
modelling, software development, concurrent systems and
more (Baier and Katoen 2008). Yet dropping some restric-
tions in a large and complex system or specification, without
affecting the working system components or violating de-
pendent specifications over a given signature, is a non-trivial
task. Moreover, in such a scenario, two logical notions in-
troduced by E. Dijkstra in (Dijkstra 1975) are highly infor-
mative: the strongest necessary condition (SNC) and the
weakest sufficient condition (WSC) of a given specification.
These correspond to the most general consequence and the
most specific abduction of such specification, respectively.

To address these scenarios and to target the relevant no-
tions SNC and WSC in a principled way, we employ a
method based on formal verification.1 In particular, we in-

1This is especially useful for abstracting away the domain-
dependent problems, and focusing on conceptual ones.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

361



troduce a forgetting-based approach in CTL and show that
it can be used to compute SNC and WSC on a restricted sub-
set of the propositional variables, in the same spirit of (Lin
2001; Doherty, Lukaszewicz, and Szalas 2001).

The rest of the paper is organised as follows. Next sec-
tion reports about the related work. Section 3 introduces the
notation and technical preliminaries. As key contributions,
Section 4, introduces the notion of forgetting in bounded
CTL. Moreover, it provides a model-theoretic characteriza-
tion of CTL for (initial) Kripke structures, and studies the
semantic properties of forgetting. In addition, a complex-
ity analysis, concerning a relevant fragment CTLAF, is car-
ried out. Section 5 explores the relation between forgetting
and SNC (WSC). Section 6 gives a model-based algorithm
for computing forgetting in CTL and outline its complexity.
Conclusion closes the paper.

Due to space restrictions, for most of the technical results,
the actual proof is moved to the supplementary material 2,
and instead an intuitive justification is put in place.

2 Related Work
The notions of SNC and WSC were considered in the scope
of formal verification among others, in generating coun-
terexamples (Dailler et al. 2018) and refinement of sys-
tem (Woodcock and Morgan 1990). In addition, the WSC
and SNC provide a method to generate successor state ax-
ioms from causal theories. In (Lin 2001), the SNC and WSC
for a proposition q on a restricted subset of the proposi-
tional variables under a propositional theory T are computed
based on the notion of forgetting. Besides, the SNC and
WSC are generalized to first order logic (FOL) and a direct
method that is based on Second-Order Quantifier Elimina-
tion (SOQE) technique has been proposed to automatically
generate SNC and WSC in (Doherty, Lukaszewicz, and Sza-
las 2001).

Forgetting, which is a dual concept of uniform interpo-
lation (Visser 1996; Konev, Walther, and Wolter 2009) and
was first formally defined in propositional and FOL by Lin
and Reiter (Lin and Reiter 1994; Eiter and Kern-Isberner
2019), can be traced back to the work of Boole on proposi-
tional variable elimination and the seminal work of Acker-
mann (Ackermann 1935). Usually, the definition of forget-
ting can be defined from the perspective of Strong/Semantic
Forgetting and Weak Forgetting respectively (Zhang and
Zhou 2010). In FOL, forgetting has often been studied as
an instance of the SOQE problem. It is shown in (Lin and
Reiter 1994) that the result of (strongly) forgetting an n-
ary predicate P from a FOL formula ϕ is ∃Rϕ[P/R], in
which R is an n-ary predicate variable and ϕ[X/Y ] is a re-
sult of replacing every occurrence of X in ϕ by Y . The
task of forgetting in FOL is to find a first-order formula
that is equivalent to ∃Rϕ[P/R]. It is obvious that this is a
SOQE problem. Similarly, the forgetting in description log-
ics (DL) are also explored to create restricted views of on-
tologies by eliminating concept and role symbols from DL-
based ontologies (Wang et al. 2010; Lutz and Wolter 2011;
Zhao and Schmidt 2017).

2https://github.com/fengrenyan/proof-of-CTL.git

In propositional logic (PL), forgetting has often been stud-
ied under the name of variable elimination. In particular,
the solution of forgetting a propositional variable p from a
PL formula ϕ is ϕ[p/⊥] ∨ ϕ[p/>] (Lin and Reiter 1994).
In (Zhang and Zhou 2009), the authors define the knowledge
forgetting of S5 modal logic from the strong forgetting point
of view to explore the relation between knowledge forgetting
and knowledge update. They propose four general postu-
lates (as we will revisit) for knowledge forgetting and show
that these four postulates precisely characterize the notion of
knowledge forgetting described above in S5. Furthermore,
forgetting in logic programs under answer-set semantics are
considered in (Zhang and Foo 2006; Eiter and Wang 2008;
Wong 2009; Wang et al. 2014; Wang, Wang, and Zhang
2013).

However, existing forgetting definitions in PL and answer
set programming are not directly applicable in modal log-
ics. Moreover, existing forgetting techniques are not directly
applicable in CTL due to its failure of uniform interpola-
tion (Maksimova 1991). Similar to (Zhang and Zhou 2009),
we research forgetting in bounded CTL from the semantic
forgetting point of view and show that the result of forget-
ting some propositions from a CTL formula is always ex-
pressible in CTL. Furthermore, we show that our notion of
forgetting satisfies those four postulates of forgetting pre-
sented in (Zhang and Zhou 2009). And last, we demonstrate
how forgetting can be used to compute the SNC and WSC
on a set of the propositions.

3 Notation and Preliminaries
Throughout this paper, we fix a finite set A of propositional
variables (or atoms or propositions), use V , V ′ for subsets
of A and V = A− V .

3.1 Kripke Structures in CTL
In general, a transition system can be described by a Kripke
structure (see (Baier and Katoen 2008) for details). A
Kripke structure is a tripleM = (S,R,L) (Emerson 1990),
where
• S is a finite nonempty set of states,3,
• R ⊆ S × S and, for each s ∈ S, there is s′ ∈ S such that

(s, s′) ∈ R,
• L : S → 2A is a labeling function.

Given a Kripke structure M = (S,R,L), a path π of
M is an infinite sequence π = (s0, s1s2, . . . ) of states with
(sj , sj+1) ∈ R for every j ≥ 0. By s′ ∈ π, we mean that
s′ is a state occurring in the path π. In particular, we call πs
a path ofM starting from s. A state s is initial if there is a
path πs ofM s.t. s′ ∈ πs for each state s′ ∈ S. If s0 is an
initial state ofM, then we denote this Kripke structureM
as (S,R,L, s0) and call it an initial structure.

3Since CTL has finite model property (Emerson and Halpern
1985) we assume that the signature of states is fixed and finite,
i.e., S ⊆ S with S = {b1, . . . , bm}, such that any CTL formula
with bounded length is satisfiable if and only if it is satisfiable in a
such Kripke structure. Thus, there are only finite number of Kripke
structures.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

362



For a given initial structure M = (S,R,L, s0) and s ∈
S, the computation tree TrMn (s) of M (or simply Trn(s)),
that has depth n and is rooted at s, is recursively defined as
in (Browne, Clarke, and Grümberg 1988), for n ≥ 0,

• Tr0(s) consists of a single node s with label L(s).

• Trn+1(s) has as its root a node s with label L(s), and if
(s, s′) ∈ R then the node s has a subtree Trn(s′).

A K-structure (or K-interpretation)K consists of an initial
structure M = (S,R,L, s0) and a state s ∈ S, i.e., K =
(M, s). If in addition s = s0 (i.e., K = (M, s0)), then the
K-structure is called an initial K-structure.

3.2 Syntax and Semantics of CTL
In the following we briefly review the basic syntax and se-
mantics of the CTL (Clarke, Emerson, and Sistla 1986). The
signature of the language L of CTL includes:

• a finite set of Boolean variables, called atoms of L: A;

• constant symbols: ⊥ and >;

• the classical connectives: ∨ and ¬;

• the path quantifiers: A and E;

• the temporal operators: X, F, G and U, that means ‘neXt
state’, ‘some Future state’, ‘all future states (Globally)’
and ‘Until’, respectively;

• parentheses: ( and ).

The priorities for the CTL connectives are assumed to be
in order as follows:

¬, EX, EF, EG, AX, AF, AG,∧,∨, EU, AU,→,

where the leftmost (rightmost) symbol has the highest (low-
est) priority. Then the existential normal form (or ENF in
short) formulas of L are inductively defined via a Backus
Naur form:

φ ::= ⊥ | > | p | ¬φ | φ ∨ φ | EXφ | EGφ | E(φ U φ) (1)

where p ∈ A. The formulas φ ∧ ψ and φ → ψ are defined
in a standard manner of propositional logic. The other form
formulas of L are abbreviated using the forms of (1).

Throughout this article we shall assume that every for-
mula of L has bounded size, where the size |ϕ| of formula
ϕ is its length over the alphabet of L (Emerson and Halpern
1985). As we will see later, this constraint will enable us
to express the result of forgetting in CTL in the form of a
(disjunctive) CTL formula. A theory of L is a finite set of
formulas of L. By abusing the notation, we identify a theory
Π as the formula

∧
Π whenever the context is clear.

We are now in the position to recall the semantics of L.
LetM = (S,R,L, s0) be an initial structure, s ∈ S and φ a
formula of L. The satisfiability relation between (M, s) and
φ, written (M, s) |= φ, is defined as follows:

• (M, s) 6|= ⊥ and (M, s) |= >;

• (M, s) |= p iff p ∈ L(s);

• (M, s) |= φ1 ∨ φ2 iff (M, s) |= φ1 or (M, s) |= φ2;

• (M, s) |= ¬φ iff (M, s) 6|= φ;

• (M, s) |= EXφ iff (M, s1) |= φ for some (s, s1) ∈ R;

• (M, s) |= EGφ iff M has a path (s1 = s, s2, . . .) such
that (M, si) |= φ for each i ≥ 1;

• (M, s) |= E(φ1Uφ2) iff M has a path (s1 = s, s2, . . .)
such that, for some i ≥ 1, (M, si) |= φ2 and (M, sj) |=
φ1 for each j (1 ≤ j < i).

Similar to the work in (Browne, Clarke, and Grümberg
1988; Bolotov 1999), only initial K-structures are consid-
ered to be candidate models in the following, unless other-
wise noted. Formally, an initial K-structure K is a model of
a formula φ whenever K |= φ. We denote Mod(φ) the set of
models of φ. The formula φ is satisfiable if Mod(φ) 6= ∅.
Given two formulas φ1 and φ2, by φ1 |= φ2 we mean
Mod(φ1) ⊆ Mod(φ2), by φ1 ≡ φ2 we mean φ1 |= φ2
and φ2 |= φ1. In this case, φ1 is equivalent to φ2. The
set of atoms occurring in φ1 is denoted by Var(φ1). The
formula φ1 is irrelevant to the atoms in a set V (or simply
V -irrelevant), written IR(φ1, V ), if there is a formula ψ with
Var(ψ) ∩ V = ∅ such that φ1 ≡ ψ.

4 Forgetting in CTL
In this section, we present the notion of forgetting in
CTL and report its properties. First, we give a general
definition of bisimulation between K-structures, called V -
bisimulation, to define forgetting in CTL. The notion of
bisimulation captures the idea that the computation trees of
two structures are behaviourally same.

Second, the characterizing formula of an initial K-
structure on some set V of propositions will be given. Then
we will show that each initial K-structure can be captured
by a CTL formula, and hence the result of forgetting V from
formula ϕ can be expressed as a disjunction of the character-
izing formulas of initial K-structures which are V -bisimilar
with some models of ϕ. And last, the related properties,
which include representation theorem, algebraic properties
(i.e., Modularity, Commutativity and Homogeneity) of the
forgetting operator, and the complexity results on the frag-
ment CTLAF, will be explored.

4.1 V -Bisimulation
In forgetting, one needs to express bisimulation w.r.t. differ-
ent sets of atomic variables explicitly under a single setting
(Zhang and Zhou 2009). Therefore, in this subsection, we
define a notion of V -bisimulation BV which is a bisimula-
tion w.r.t. a set V of atomic propositions for our aims.

In order to introduce the actual notion, we start with the
construction of V -bisimulation up to a certain degree (of
depth) n ∈ N in the computation trees (denoted by BVn )
which we will introduce next: Let V ⊆ A and Ki =
(Mi, si) with i ∈ {1, 2} andMi = (Si, Ri, Li, s

i
0).

• (K1,K2) ∈ BV0 if L1(s1)− V = L2(s2)− V ;

• for n ≥ 0, (K1,K2) ∈ BVn+1 if:

– (K1,K2) ∈ BV0 ,
– for every (s1, s

′
1) ∈ R1, there is a (s2, s

′
2) ∈ R2 such

that (K′1,K′2) ∈ BVn , and
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– for every (s2, s
′
2) ∈ R2, there is a (s1, s

′
1) ∈ R1 such

that (K′1,K′2) ∈ BVn ,

where K′i = (Mi, s
′
i) with i ∈ {1, 2}, and n ∈ N.

In the rest of the paper, by bisimulation, we shall only refer
to V -bisimulation. So to ease the notation, from now on we
will omit the superscript V in BVi and write Bi instead.

Now, we are ready to define the notion of V -bisimulation
between K-structures.

Definition 1 (V -bisimulation). Let V ⊆ A. Given two K-
structures K1 and K2 are V -bisimilar, denoted K1 ↔V K2,
if and only if (K1,K2) ∈ Bn for all n ≥ 0. Moreover, let
i ∈ {1, 2}, then two paths πi = (si,1, si,2, . . .) ofMi are V -
bisimilar if K1,j ↔V K2,j for every j ∈ N≥1 where Ki,j =
(Mi, si,j).

On the one hand, this notion can be considered as a simple
generalization of the classical bisimulation-equivalence of
Definition 7.1 in (Baier and Katoen 2008) when V = A and
there is only one initial state (as in our case).

On the other hand, our definition of Bn is similar to
the state equivalence (i.e., En) in (Browne, Clarke, and
Grümberg 1988), yet it is different in the sense that ours is
defined on K-structures, while state-equivalence is defined
on states. Moreover, our notion is also different from the
state-based bisimulation notion of Definition 7.7 in (Baier
and Katoen 2008), which is defined for states of a given K-
structure. 4 Note that if we defined V -bisimulation on states
instead, then it would not be an equivalence relation any-
more (as it will be shown in Lemma 1).

Example 2 (cont’d from Example 1). Let us call the model
given in the previous example as K1 with initial state s0, i.e.
K1 = ((S,R,L, s0), s0), as illustrated in Figure 2. Then,
K2 is obtained from K1 by removing sp,5 and K3 is ob-
tained fromK2 by removing se. Observe thatK1 ↔{sp} K2,
K2 ↔{se} K3 and K1 ↔{sp,se} K3. Besides, K1 is not
bisimilar (Baier and Katoen 2008) with either K2 or K3.

When the underlying initial structures are clear from the
context, we shall adopt the simplified notation s1 ↔V s2
emphasising states, to denote K1 ↔V K2.

Lemma 1. The relation↔V is an equivalence relation.

Next, we give some further key properties of ↔V w.r.t.
different V s.

Proposition 1. Let i ∈ {1, 2}, V1, V2 ⊆ A, s′1 and s′2 be
two states, π′1 and π′2 be two paths, and Ki = (Mi, si) (i =
1, 2, 3) be K-structures such that K1 ↔V1

K2 and K2 ↔V2

K3. Then:

(i) s′1 ↔Vi
s′2 (i = 1, 2) implies s′1 ↔V1∪V2

s′2;
(ii) π′1 ↔Vi

π′2 (i = 1, 2) implies π′1 ↔V1∪V2
π′2;

4As reported to us by an anonymous reviewer, there is also a
notion of k-bisimulation (Kaushik et al. 2002) outside the realm of
logic (but from database literature), which has a similar intuition
to our Bn, yet in the opposite direction: they consider bisimilarity
through parents of a node (states), while we consider successors in
relations. Again our notion is defined over K-structures.

5It removes sp from L(s) for every s ∈ S. Note that L(s4) −
{sp} = L(s2).

Figure 2: V -bisimulation between K-structures

(iii) for each path πs1 of M1 there is a path πs2 of M2

such that πs1 ↔V1
πs2 , and vice versa;

(iv) K1 ↔V1∪V2 K3;
(v) If V1 ⊆ V2 then K1 ↔V2

K2.
In Proposition 1, properties (i) to (iii) are the standard

properties for V -bisimulation. Property (iv) shows that if
a K-structure is V1 and V2-bisimilar with the other two K-
structures, respectively, then those two K-structures are V1∪
V2-bisimilar. For an example, see Figure 2. This property
is crucial for forgetting. And last, (v) says that if two K-
structures are V1-bisimilar, then they are V2-bisimilar for any
V2 with V1 ⊆ V2 ⊆ A.

Intuitively, if two K-structures are V -bisimilar, then they
satisfy the same formula ϕ that does not contain any atoms
in V , i.e., IR(ϕ, V ). This idea has been formalized and
shown in the following theorem.
Theorem 1. Let V ⊆ A, Ki (i = 1, 2) be two K-structures
such that K1 ↔V K2 and φ be a formula with IR(φ, V ).
Then K1 |= φ if and only if K2 |= φ.

Below, we illustrate this idea over an example.
Example 3 (cont’d from Example 2). Let ϕ1 = d ∧ EFse ∧
AG(se → AXd) and ϕ2 = d ∧ AXse be two CTL formulae.
They are {sp}-irrelevant. One can see that K1 and K2 in
Figure 2 satisfy ϕ1, but not ϕ2.

Next, we define the V -bisimulation between computation
trees (of two initial structures). This construction will be-
come useful when we define the characterizing formula of
an initial K-structure using the characterizing formula of a
computation tree.

Let V ⊆ A, Mi (i = 1, 2) be initial structures. A
computation tree Trn(s1) of M1 is V -bisimilar to a com-
putation tree Trn(s2) of M2, written (M1,Trn(s1)) ↔V

(M2,Trn(s2)) (or simply Trn(s1)↔V Trn(s2)), if
• L1(s1)− V = L2(s2)− V ,
• For every subtree Trn−1(s′i) of Trn(si),

Trn(s(i mod 2)+1) has a subtree Trn−1(s′(i mod 2)+1)

such that Trn−1(s′i)↔V Trn−1(s′(i mod 2)+1).
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The last condition in the above definition hold trivially for
n = 0.
Proposition 2. Let V ⊆ A and (Mi, si) (i = 1, 2) be two
K-structures. Then

(s1, s2) ∈ Bn iff Trj(s1)↔V Trj(s2) for every 0 ≤ j ≤ n.
Proposition 2 says that a state s1 of an initial structure

is V -bisimilar to a state s2 of another initial structure at a
particular depth n if, and only if, all of the respective sub-
trees rooted at s1 and s2 until depth n are V -bisimilar.

Moreover, if two states s and s′ from the same initial
structure are not V -bisimilar, then the computation trees
rooted at s and s′, respectively, are not V -bisimilar at some
depth k ∈ N. This is shown in the following proposition.
Proposition 3. Let V ⊆ A, M be an initial structure and
s, s′ ∈ S such that s 6↔V s′. There exists a least k such that
Trk(s) and Trk(s′) are not V -bisimilar.

4.2 Characterization of an Initial K-structure
In the following, we present characterizing formulas of ini-
tial K-structures over a signature to characterize the ↔V -
class of an initial K-structure. 6

To start with, we give the definition of characterizing for-
mulas of computation trees.
Definition 2. Let V ⊆ A,M = (S,R,L, s0) be an initial
structure and s ∈ S. The characterizing formula of the com-
putation tree Trn(s) on V , written FV (Trn(s)), is defined
recursively as:

FV (Tr0(s)) =
∧

p∈V ∩L(s)

p ∧
∧

q∈V−L(s)

¬q,

FV (Trk+1(s)) =
∧

(s,s′)∈R

EXFV (Trk(s′))

∧AX

 ∨
(s,s′)∈R

FV (Trk(s′))

 ∧ FV (Tr0(s))

for k ≥ 0.
The characterizing formula of a computation tree formally

exhibits the content of each node in V (i.e., atoms in V that
are true if they are in the label of this node of the compu-
tation tree, and false otherwise) and the temporal relation
between states recursively. Clearly, FV (Tr0(s)) expresses
the content of node s in terms of V , the conjunction with EX
part guarantees that each direct successor s′ of s is captured
by a CTL formula until depth k, and the AX part guarantees
that for each direct successor s′ of s there exists another di-
rect successor s′′ of s such that s′′ is V -bisimilar to s′ until
depth k.

The following result shows that the V -bisimulation be-
tween two computation trees implies the semantic equiva-
lence of the corresponding characterizing formulas.

6Similar approaches has been taken in the literature e.g.,
in (Mycielski, Rozenberg, and Salomaa 1997), a class (namely,
≡k-class) of structures of monadic formulas has been character-
ized by Hintikka formulae (Hintikka 1953). Another example is
Yankov-Fine construction in (Yankov 1968).

Lemma 2. Let V ⊆ A, and M,M′ be two initial struc-
tures, s ∈ S, s′ ∈ S′ and n ≥ 0. If Trn(s) ↔V Trn(s′),
then FV (Trn(s)) ≡ FV (Trn(s′)).

In Lemma 2, let s′ = s. Then, it is easy to see that for any
formula ϕ of V , if ϕ is a characterizing formula of Trn(s)
then ϕ ≡ FV (Trn(s)).

The notion of V -bisimulation and Proposition 3 nat-
urally induce a complementary notion, so-called V -
distinguishability, which will turn out to be useful in defin-
ing the characterizing formula of an initial K-structure. In
particular, we will say that two states s and s′ of M in
Proposition 3 are V -distinguishable if s 6↔V s′, and write
that disV (M, s, s′, k), where we assume k to be the small-
est natural number which makes s and s′ V -distinguishable.
Furthermore, we say that an initial structure M is V -
distinguishable if there are two states s and s′ in M that
are V -distinguishable. Then given an initial structure M
and a set V of atoms, the smallest value of k which ensures
V -distinguishability is in question. We shall call such a k
as the characterization number ofM w.r.t. V and define it
formally as

ch(M, V ) =

{
max{k | s, s′ ∈ S and disV (M, s, s′, k)},

M is V -distinguishable;
min{k | Bk = Bk+1}, otherwise.

since it will be crucial in defining the characterization for-
mula (for a given initial K-structure).

Observe that the ch(M, V ) always exists for every initial
structureM and V ⊆ A: If there are two states s1 and s2
such that s1 and s2 are V -distinguishable, then the charac-
terization number exists by definition. In the extreme case, if
for all s, s′ inM, ((M, s), (M, s′)) ∈ Bk for all k ≥ 0, and
Bk = Bk+1 (since the set of states in M is always finite),
then the characterization number is 0.

Intuitively, given a state s ∈ S ofM, the characterization
number c of M divides the states in M into two classes:
The one which contains those states s′ until depth c such
that (M, s′) |= FV (Trc(s)), and the other which contains
the remaining states. Now, we are finally ready to define the
characterizing formula of an initial K-structure.

Definition 3 (Characterizing Formula). Let V ⊆ A, and
K = (M, s0) be an initial K-structure with c = ch(M, V ),
and for every state s′ ∈ S of M, T (s′) = FV (Trc(s′)).
Then, the characterizing formula FV (K) of K on V is:

T (s0) ∧∧
s∈S

AG

T (s)→
∧

(s,s′)∈R

EXT (s′) ∧ AX(
∨

(s,s′)∈R

T (s′))


Here, T (s0) ensures that the K-structure starts from the

initial state, and the remaining part ensures that we go deep
enough in the computation tree (i.e., through all possible
transitions from every state s ∈ S) to detect any two V -
distinguishable states s and s′ (which would then imply
T (s) 6≡ T (s′)). As a remark on notation, sometimes we
shall need to express the initial structure and the initial state
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explicitly, then we will use the rather transparent notation
i.e., FV (M, s0) (instead of FV (K)).

One can observe that IR(FV (M, s0), V ). Besides, given
a set of atomic propositions V , any initial K-structure has
its own unique characterizing formula on V . As we will see
later, the characterizing formula will play a crucial role in
showing important properties of forgetting, as well as in our
main contribution which is computing the SNC and WSC of
a CTL formula under an initial K-structure.

The following example illustrates how one can compute a
characterizing formula:

Example 4 (cont’d from Example 2). Reconsider the K2 =
(M, s0) in Figure 3, illustrated on the left side (originally
introduced in Figure 2). The corresponding computation
trees are listed on the right side: from left to right, they
are rooted at s0 with depth 0, 1, 2 and 3, respectively. For
simplicity, the labels of the nodes in the trees are omitted
(See Figure 2 for the actual labels). Let V = {d} then
V = {s, se}.

We can see that Tr0(s1)↔V Tr0(s2), since L(s1)− V =

L(s2) − V . Moreover, Tr1(s1) 6↔V Tr1(s2), since there
is (s1, s2) ∈ R such that for any (s2, s

′) ∈ R, it is
the case that L(s2) − V 6= L(s′) − V (because there is
only one direct successor s′ = s0). Hence, we have s1
and s2 which are V -distinguishable and disV (M, s1, s2, 1).
Similarly, we have disV (M, s0, s1, 0), disV (M, s0, s2, 0)
and disV (M, s0, s

′
3, 0). Furthermore, we can see that

s2 ↔V s′3. Therefore, ch(M, V ) = max{k | s, s′ ∈
S and disV (M, s, s′, k)} = 1. And we have the following:

FV (Tr0(s0)) = d, FV (Tr0(s1)) = ¬d,
FV (Tr0(s2)) = ¬d, FV (Tr0(s′3)) = ¬d,
FV (Tr1(s0)) = EX¬d ∧ AX¬d ∧ d ≡ AX¬d ∧ d,
FV (Tr1(s1)) = EX¬d ∧ EX¬d ∧ AX(¬d ∨ ¬d) ∧ ¬d

≡ AX¬d ∧ ¬d,
FV (Tr1(s2)) = EXd ∧ AXd ∧ ¬d ≡ AXd ∧ ¬d,
FV (Tr1(s′3)) ≡ FV (Tr1(s2)),

FV (M, s0) ≡ AX¬d ∧ d∧
AG(AX¬d ∧ d→ AX(AX¬d ∧ ¬d))∧
AG(AX¬d ∧ ¬d→ AX(AXd ∧ ¬d))∧
AG(AXd ∧ ¬d→ AX(AX¬d ∧ d)).

The following result shows that there is a correspondence
between the semantic equivalence of characterizing formu-
lae and the initial K-structures which are V -bisimilar. That
is, two initial K-structures are V -bisimilar if, and only if
their characterizing formulae are semantically equivalent.
This means, characterizing formula characterizes initial K-
structures which are equivalent up to V -bisimulation.

Theorem 2. Let V ⊆ A, M = (S,R,L, s0) and M′ =
(S′, R′, L′, s′0) be two initial structures. Then,

(i) (M′, s′0) |= FV (M, s0) iff (M, s0)↔V (M′, s′0);

(ii) s0 ↔V s′0 implies FV (M, s0) ≡ FV (M′, s′0).

Figure 3: On the left side,K2 (aforementioned in Figure 2), and on
the right side, the corresponding computation trees of depth 0, 1, 2
and 3, respectively. Labels of the nodes are omitted for simplicity.

It is noteworthy that under our assumption of bounded
size (of a CTL formula), say n, it will be sufficient to con-
sider the models of formulas within a state space S satisfy-
ing |S| = n8n (Emerson and Halpern 1985). Any other
model must be bisimilar to some model within the state
space, and their characterizing formulas are equivalent due
to Theorem 2. Therefore, given a formula of size within
the bound, only a finite number of such initial K-structures
need to be considered as the candidate models. This fact is
expressed in the following lemma.
Lemma 3. Let ϕ be a formula. We have

ϕ ≡
∨

(M,s0)∈Mod(ϕ)

FA(M, s0). (2)

Yet Lemma 3 has an additional message: Any CTL for-
mula can be expressed in the form of a disjunction of the
characterizing formulae of its models. This fact will be cru-
cial in the results we present in next sections.

4.3 Semantic Properties of Forgetting in CTL
In this subsection, we present the notion of forgetting in CTL
and investigate its semantic properties. Let us start with the
formal definition.
Definition 4 (Forgetting). Let V ⊆ A and φ be a formula.
A formula ψ with Var(ψ)∩V = ∅ is a result of forgetting V
from φ (denoted as FCTL(φ, V )), if

Mod(ψ) = {K is initial | ∃K′ ∈ Mod(φ) s.t. K′ ↔V K}.
Realize that Definition 4 implies if both ψ and ψ′ are re-

sults of forgetting V from φ, then Mod(ψ) = Mod(ψ′), i.e.,
ψ and ψ′ have the same models. In this sense, the result of
forgetting V from φ is unique (up to semantic equivalence).
By Lemma 3, such a formula always exists, which is equiv-
alent to ∨

K∈{K′|∃K′′∈Mod(φ) and K′′↔V K′}

FV (K).

At this point, it is important to emphasize that, the notion
of forgetting we have defined for CTL respects the clas-
sical forgetting defined for propositional logic (PL) (Lin
and Reiter 1994). To see this, assume that ϕ is a PL for-
mula and p ∈ A, then Forget(ϕ, p) is a result of forget-
ting p from ϕ; that is, Forget(ϕ, p) ≡ ϕ[p/⊥] ∨ ϕ[p/>].
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That way, given a set V ⊆ A, one can recursively de-
fine Forget(ϕ, V ∪ {p}) = Forget(Forget(ϕ, p), V ), where
Forget(ϕ, ∅) = ϕ. Using this insight, the following result
shows that the classical notion of forgetting (for PL (Lin
and Reiter 1994)) is a special case of forgetting in CTL.

Theorem 3. Let ϕ be a PL formula and V ⊆ A, then

FCTL(ϕ, V ) ≡ Forget(ϕ, V ).

In (Zhang and Zhou 2009), authors give four postulates
concerning knowledge forgetting in S5 modal logic (also
called forgetting postulates) which can be considered as de-
sirable properties of such a notion. In the following, we first
list these postulates, and then show that our notion of forget-
ting in CTL satisfies them.

Forgetting postulates (Zhang and Zhou 2009) are:

(W) Weakening: ϕ |= ϕ′;

(PP) Positive Persistence: for any formula η, if IR(η, V )
and ϕ |= η then ϕ′ |= η;

(NP) Negative Persistence : for any formula η, if IR(η, V )
and ϕ 6|= η then ϕ′ 6|= η;

(IR) Irrelevance: IR(ϕ′, V )

where V ⊆ A, ϕ is a formula and ϕ′ is a result of forgetting
V from ϕ. Intuitively, the postulate (W) says, forgetting
weakens the original formula; the postulates (PP) and (NP)
say that forgetting results have no effect on formulas that
are irrelevant to forgotten atoms; the postulate (IR) states
that forgetting result is irrelevant to forgotten atoms. It is
noteworthy that they are not all orthogonal e.g., (NP) is a
consequence of (W) and (PP). Nonetheless, we prefer to
list them all, in order to outline the basic intuition behind
them.

Theorem 4 (Representation Theorem). Letϕ andϕ′ be CTL
formulas and V ⊆ A. The following statements are equiva-
lent:

(i) ϕ′ ≡ FCTL(ϕ, V ),
(ii) ϕ′ ≡ {φ | ϕ |= φ and IR(φ, V )},

(iii) Postulates (W), (PP), (NP) and (IR) hold if ϕ,ϕ′ and
V are as in (i) and (ii).

Proof. (i)⇔ (ii). To prove this, it is enough to show that:

Mod(FCTL(ϕ, V )) = Mod({φ|ϕ |= φ, IR(φ, V )})

= Mod(
∨

M,s0∈Mod(ϕ)

FA−V (M, s0)).

First, suppose that (M′, s′0) is a model of FCTL(ϕ, V ). Then
there exists an initial K-structure (M, s0) which is a model
of ϕ and (M, s0) ↔V (M′, s′0). By Theorem 1, we have
(M′, s′0) |= φ for all φ such that ϕ |= φ and IR(φ, V ). Thus,
(M′, s′0) is a model of the theory {φ | ϕ |= φ, IR(φ, V )}.

Second, suppose that (M′, s′0) is a model
of {φ | ϕ |= φ, IR(φ, V )}. Thus,
(M′, s′0) |=

∨
(M,s0)∈Mod(ϕ) FA−V (M, s0) since∨

(M,s0)∈Mod(ϕ) FA−V (M, s0) is irrelevant to V and
ϕ |=

∨
(M,s0)∈Mod(ϕ) FA−V (M, s0) by Lemma 3.

Last, suppose that (M′, s′0) is a model of∨
M,s0∈Mod(ϕ) FA−V (M, s0). Then there exists

(M, s0) ∈ Mod(ϕ) such that (M′, s′0) |= FA−V (M, s0).
Hence, (M, s0) ↔V (M′, s′0) by Theorem 2. Thus
(M′, s′0) is also a model of FCTL(ϕ, V ).

(ii) ⇒ (iii). This is rather straightforward, so we put it
into the supplementary material.

(iii)⇒ (ii). By Positive Persistence, we have ϕ′ |= {φ |
ϕ |= φ, IR(φ, V )}. The {φ | ϕ |= φ, IR(φ, V )} |= ϕ′ can
be obtained from (W) and (IR). Thus, ϕ′ is equivalent to
{φ | ϕ |= φ, IR(φ, V )}.

It is noteworthy that the postulate IR is of crucial im-
portance for computing SNC and WSC. Consider the ψ =
ϕ∧ (q ↔ α). If IR(ϕ∧α, {q}), then the result of forgetting
q from ψ is ϕ. This property is described in the following
lemma, and as we will later see in Section 5, it will become
important (in reducing the SNC (WSC) of any CTL formula
to the one of a proposition).
Lemma 4. Let ϕ and α be two CTL formulae and q ∈
Var(ϕ) ∪ Var(α). Then FCTL(ϕ ∧ (q ↔ α), q) ≡ ϕ.

In what follows, we list other interesting properties of the
forgetting operator. According to the definition of forget-
ting, the set of atoms to be forgotten should be forgotten as
a whole. The following property guarantees that this can be
achieved modularly by applying forgetting one by one to the
atoms to be forgotten.
Proposition 4 (Modularity). Given a formula ϕ ∈ CTL, V
a set of atoms and p an atom such that p /∈ V . Then,

FCTL(ϕ, {p} ∪ V ) ≡ FCTL(FCTL(ϕ, p), V ).

The next property follows from the above proposition.
Corollary 5 (Commutativity). Let ϕ be a formula and Vi ⊆
A (i = 1, 2). Then:

FCTL(ϕ, V1 ∪ V2) ≡ FCTL(FCTL(ϕ, V1), V2).

The following properties show that the forgetting respects
the basic semantic notions of logic. They hold in both classi-
cal propositional logic and modal logic S5 (Zhang and Zhou
2009). Below we show that they are also satisfied in our
notion forgetting in CTL.
Proposition 5. Let ϕ, ϕi, ψi (i = 1, 2) be formulas in CTL
and V ⊆ A. We have

(i) FCTL(ϕ, V ) is satisfiable iff ϕ is;
(ii) If ϕ1 ≡ ϕ2, then FCTL(ϕ1, V ) ≡ FCTL(ϕ2, V );

(iii) If ϕ1 |= ϕ2, then FCTL(ϕ1, V ) |= FCTL(ϕ2, V );
(iv) FCTL(ψ1 ∨ ψ2, V ) ≡ FCTL(ψ1, V ) ∨ FCTL(ψ2, V );
(v) FCTL(ψ1 ∧ ψ2, V ) |= FCTL(ψ1, V ) ∧ FCTL(ψ2, V );
The next property shows that forgetting a set V ⊆ A from

a formula with path quantifiers is equivalent to quantify the
result of forgetting V from the formula with the same path
quantifiers.
Proposition 6 (Homogeneity). Let V ⊆ A and φ ∈ CTL,

(i) FCTL(AXφ, V ) ≡ AXFCTL(φ, V ).
(ii) FCTL(EXφ, V ) ≡ EXFCTL(φ, V ).

(iii) FCTL(AFφ, V ) ≡ AFFCTL(φ, V ).
(iv) FCTL(EFφ, V ) ≡ EFFCTL(φ, V ).
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4.4 Complexity Results
In the following, we analyze the computational complexity
of the various tasks regarding the forgetting in the fragment
CTLAF. The fragment CTLAF of CTL, in which each for-
mula contains only AF temporal connective, corresponds to
specifications that are expected to hold in all branches even-
tually. Such properties are of special interest in concurrent
systems e.g., mutual exclusion and waiting events (Baier and
Katoen 2008). Our first result shows that the problem of
model checking for forgetting of V from ϕ is NP-complete,
if ϕ ∈ CTLAF.
Proposition 7 (Model Checking). Given an initial K-
structure (M, s0), V ⊆ A and ϕ ∈ CTLAF, deciding
(M, s0) |=? FCTL(ϕ, V ) is NP-complete.

In the following, we investigate some complexity results
concerning forgetting and the logical entailment in this frag-
ment.
Theorem 6 (Entailment). Let ϕ and ψ be two CTLAF formu-
las and V be a set of atoms. Then,

(i) deciding FCTL(ϕ, V ) |=? ψ is co-NP-complete,
(ii) deciding ψ |=? FCTL(ϕ, V ) is ΠP

2-complete,
(iii) deciding FCTL(ϕ, V ) |=? FCTL(ψ, V ) is ΠP

2-complete.

Proof. (i) and (iii) is moved to supplementary material due
to space restrictions. (ii) Membership: We consider the
complement of the problem. Guess an initial K-structure
(M, s0) which has polynomial size in the size of ψ satisfy-
ing ψ and check (M, s0) 6|= FCTL( ϕ, V ). By Proposition 7,
it is in ΣP

2 . So the original problem is in ΠP
2 . Hardness: Let

ψ ≡ >. Then the problem is reduced to decide the valid-
ity of FCTL(ϕ, V ). Since propositional forgetting is a special
case by Theorem 3, the hardness follows from the proof of
Proposition 24 in (Lang, Liberatore, and Marquis 2003).

The following results are implications of Theorem 6.
Corollary 7. Let ϕ and ψ be two CTLAF formulas and V a
set of atoms. Then

(i) deciding ψ ≡? FCTL(ϕ, V ) is ΠP
2-complete,

(ii) deciding FCTL(ϕ, V ) ≡? ϕ is co-NP-complete,
(iii) deciding FCTL(ϕ, V ) ≡? FCTL(ψ, V ) is ΠP

2-complete.

5 Necessary and Sufficient Conditions
In this section, we present the final key notions of our work:
namely, the strongest necessary condition (SNC) and the
weakest sufficient condition (WSC) of a given CTL specifi-
cation. As aforementioned in the introduction, these notions
(introduced by E. Dijkstra in (Dijkstra 1975)) correspond to
the most general consequence and the most specific abduc-
tion of a specification, respectively, and have been central to
a wide variety of tasks and studies (see Related Work). Our
contribution, in particular, will be on computing SNC and
WSC via forgetting under a given initial K-structure and a
set V of atoms. Let us give the formal definition.
Definition 5 (sufficient and necessary condition). Let φ be
a formula (or an initial K-structure), ψ be a formula, V ⊆
Var(φ), q ∈ Var(φ)− V and Var(ψ) ⊆ V .

• ψ is a necessary condition (NC in short) of q on V under
φ if φ |= q → ψ.
• ψ is a sufficient condition (SC in short) of q on V under
φ if φ |= ψ → q.
• ψ is a strongest necessary condition (SNC in short) of q

on V under φ if it is a NC of q on V under φ, and φ |=
ψ → ψ′ for any NC ψ′ of q on V under φ.
• ψ is a weakest sufficient condition (WSC in short) of q on
V under φ if it is a SC of q on V under φ, and φ |= ψ′ →
ψ for any SC ψ′ of q on V under φ.

Note that if both ψ and ψ′ are SNC (WSC) of q on V
under φ, then Mod(ψ) = Mod(ψ′), i.e., ψ and ψ′ have the
same models. In this sense, the SNC (WSC) of q on V under
φ is unique (up to semantic equivalence). The following
result shows that the SNC and WSC are in fact dual notions.

Proposition 8 (Dual). Let V, q, ϕ and ψ are defined as in
Definition 5. Then, ψ is a SNC (WSC) of q on V under ϕ iff
¬ψ is a WSC (SNC) of ¬q on V under ϕ.

In order to generalise Definition 5 to arbitrary formulas,
one can replace q (in the definition) by any formula α, and
redefine V as a subset of Var(α) ∪ Var(φ).

It turns out that the previous notions of SNC and WSC
for an atomic variable can be lifted to any formula, or, con-
versely, the SNC and WSC of any formula can be reduced
to that of an atomic variable, as the following result shows.

Proposition 9. Let Γ and α be two formulas, V ⊆ Var(α)∪
Var(Γ) and q be a new proposition not in Γ and α. Then, a
formula ϕ of V is the SNC (WSC) of α on V under Γ iff it is
the SNC (WSC) of q on V under Γ′ = Γ ∪ {q ↔ α}.

To give an intuition for WSC, we give the following ex-
ample. The intuition for SNC is dual.

Example 5 (cont’d from Example 2). RecallK2 in Figure 2.
Let ψ = EX(s ∧ (EXse ∨ EX¬d)), ϕ = EX(s ∧ EX¬d),
A = {d, s, se} and V = {s, d}, then we can check that the
WSC of ψ on V under K2 is ϕ.

We verify this result by the following two steps:

(i) Observe that ϕ |= ψ and Var(ϕ) ⊆ V . Besides,
(M, s0) |= ϕ ∧ ψ, hence K2 |= ϕ → ψ, which means
ϕ is a SC of ψ on V under K2,

(ii) We will show that for any SC ϕ′ of ψ on V under K2,
we have K2 |= ϕ′ → ϕ. It is easy to see that if K2 6|=
ϕ′, then K2 |= ϕ′ → ϕ, trivially. Now let’s assume
K2 |= ϕ′. In this case, we haveϕ′ |= ψ sinceϕ′ is a SC
of ψ on V under K2. Therefore, there is ϕ′ |= EX(s ∧
φ), in which φ is a formula such that φ |= EXse ∨
EX¬d. And then φ |= EX¬d since IR(ϕ′, V ). Hence,
ϕ′ |= ϕ and we get K2 |= ϕ′ → ϕ, as desired.

The following result establishes the bridge between for-
getting and the notion of SNC (WSC) which are central to
our contribution.

Theorem 8. Let ϕ be a formula, V ⊆ Var(ϕ) and q ∈
Var(ϕ)− V .

(i) FCTL(ϕ ∧ q, (Var(ϕ) ∪ {q}) − V ) is a SNC of q on V
under ϕ.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

368



Algorithm 1: A Model-based CTL Forgetting Procedure

Input: A CTLformula ϕ and a set V of atoms
Output: FCTL(ϕ, V )

1 ψ ← ⊥;
2 foreach initial K-structure K (over A and S) do
3 if K 6|= ϕ then continue;
4 foreach initial K-structure K′ with K ↔V K′ do
5 ψ ← ψ ∨ FV (K′);
6 end
7 end
8 return ψ;

(ii) ¬FCTL(ϕ ∧ ¬q, (Var(ϕ) ∪ {q})− V ) is a WSC of q on
V under ϕ.

Following Theorem 8, assume that β = FCTL(ϕ ∧
q, (Var(ϕ)∪{q})−V ). Then, ϕ∧q |= β by (W). Moreover,
ϕ ∧ q |= β, and then β is a NC of q on V under ϕ.

In addition, for any ψ with IR(ψ, (Var(ϕ)∪{q})−V ) and
ϕ ∧ q |= ψ, we have β |= ψ by (PP). Therefore, β is the
SNC of q on V under ϕ. This shows the intuition of how the
SNC can be obtained from the forgetting.

Since any initial K-structure can be characterized by a
CTL formula, by Theorem 8 one can obtain the SNC (and its
dual WSC) of a target property (a formula) under an initial
K-structure just by forgetting. This is shown in the following
result.

Theorem 9. Let K = (M, s) be an initial K-structure with
M = (S,R,L, s0) on the set A of atoms, V ⊆ A and
q ∈ V ′ = A− V . Then,

(i) the SNC of q on V under K is FCTL(FA(K) ∧ q, V ′).
(ii) the WSC of q on V underK is ¬FCTL(FA(K)∧¬q, V ′).

6 An Algorithm for Forgetting in CTL
The technical developments we have presented in previous
sections naturally induce a procedure to compute forgetting
in CTL. We think that it is useful to outline such a procedure
explicitly in the form of an algorithm. It is a model-based
approach (presented in Algorithm 1); that is, it will compute
the forgetting applied to a formula, simply by considering
all the possible models of that formula. Its correctness is
guaranteed by Lemma 3 and Theorem 2.

The example we give below echoes the initial example
which was given in the introduction, and finalizes the run-
ning example with a simple intuition of forgetting.

Example 6. Recall the K-structure K1 given in Figure 2,
and assume that we are given a property α = EF(se ∧ sp).
It is easy to see that K1 in Figure 2 satisfy α. If sp is
intended to be removed, i.e., forgetting sp from α, then
FCTL(α, {sp}) ≡ EFse. Hence, the company can use the
new specification EFse to guide the new production pro-
cess (which guarantees that the sedan car is eventually pro-
duced).

As we will show below, computing the forgetting by go-
ing through all the models is not very efficient, as one might

expect. However, settling it is important from a theoretical
point of view i.e., to see how costly is the naive approach.

Proposition 10. Let ϕ be a CTL formula and V ⊆ A with
|S| = m, |A| = n and |V | = x. Then the space complexity
isO((n−x)m2(m+2)2nm logm) and the time complexity of
Algorithm 1 is at least the same as the space.

As expected, Algorithm 1 has a high cost; namely, EX-
PSPACE complexity in the size of the state space and A,
which does not look encouraging. However, we believe that
settling this result is important both from a theoretical and
a practical point of view. Theoretically, it gives us a picture
about the worst case, and urges us to come up with more
efficient syntactical approaches which is a part of our future
agenda. Moreover, we believe that model-based investiga-
tion and some of the structural observations we have made
provide us with informative valuable insights, which in turn
could be useful in designing future algorithms which can ex-
ploit these observations, and potentially could lead to even
efficient approximations with provably good bounds. Such
future developments might prove important in developing
practical algorithms as well.

7 Concluding Remarks
Summary In this paper, we have presented the notion of
forgetting for CTL which enables computing weakest suffi-
cient and strongest necessary conditions of specifications.
In doing so, we introduced and employed the notion of
V -bisimulation which can be considered as a simple vari-
able based generalisation of classical bisimulation. Fur-
thermore, we have studied formal properties of forgetting,
among them, homogeneity, modularity and commutativity.
In particular, we have shown that our notion of forgetting
satisfies the existing postulates of forgetting, which means
it faithfully extends the notion of forgetting from classical
propositional logic and modal logic S5 to CTL. On the com-
plexity theory side, we have investigated the model checking
and the entailment problems of forgetting in the fragment
CTLAF, which turn out to be NP-complete and range from
co-NP to ΠP

2-completeness, respectively. And finally, we
proposed a model-based algorithm which computes the for-
getting of a given formula and a set of variables, and outlined
its complexity.

Future work Note that, when a transition systemM does
not satisfy a specification φ, one can evaluate the weakest
sufficient condition ψ over a signature V under which M
satisfies φ, viz.,M |= ψ → φ and ψ mentions only atoms
from V . It is worthwhile to explore how the condition ψ can
guide the design of a new transition systemM′ satisfying φ.

Moreover, a further study regarding the computational
complexity for other general fragments is required and part
of the future research agenda. As mentioned in Section 6,
these high complexity results are encouraging for other syn-
tactic approaches e.g., proof-theoretic. Such investigation
can be coupled with fine-grained parameterized analysis, as
well as a search for approximation algorithms with provably
good accuracy bounds.
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