Rhodes, Greece. September 12-18, 2020.
ISSN: 2334-1033
ISBN: 978-0-9992411-7-2
Copyright © 2020 International Joint Conferences on Artificial Intelligence Organization
The integrated modeling and analysis of dynamic systems and the data they manipulate has been long advocated, on the one hand, to understand how data and corresponding decisions affect the system execution, and on the other hand to capture how actions occurring in the systems operate over data. KR techniques proved successful in handling a variety of tasks over such integrated models, ranging from verification to online monitoring. In this paper, we consider a simple, yet relevant model for data-aware dynamic systems (DDSs), consisting of a finite-state control structure defining the executability of actions that manipulate a finite set of variables with an infinite domain. On top of this model, we consider a data-aware version of reactive synthesis, where execution strategies are built by guaranteeing the satisfaction of a desired linear temporal property that simultaneously accounts for the system dynamics and data evolution.