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Abstract
Nondeterministic strategies are strategies (or protocols, or
plans) that, given a history in a game, assign a set of pos-
sible actions, all of which should be winning. An important
problem is that of refining such strategies. For instance, given
a nondeterministic strategy that allows only safe executions,
refine it to, additionally, eventually reach a desired state of af-
fairs. We show that strategic problems involving strategy re-
finement can be solved elegantly in the framework of Strategy
Logic (SL), a very expressive logic to reason about strategic
abilities. Specifically, we introduce an extension of SL with
nondeterministic strategies and an operator expressing strat-
egy refinement. We show that model checking this logic can
be done at no additional computational cost with respect to
standard SL, and can be used to solve a variety of problems
such as synthesis of maximally permissive strategies or max-
imally permissive Nash equilibria.

1 Introduction
Program synthesis is a fundamental problem in different ar-
eas of computer science such as formal methods, artificial
intelligence or control theory. The objects to be synthesized
are sometimes called systems, plans, strategies, protocols or
controllers, but essentially they are always functions that de-
fine which transition to take, or which action to perform, af-
ter a given finite run of the system. The basic problem is,
in essence, to synthesize (if possible) a finite representation
of such a function such that the set of generated runs satis-
fies a given specification. When the system is closed, i.e.,
when the evolution of the system depends solely on its ac-
tions, a plan is essentially a sequence of actions, and synthe-
sis is usually rather easy. For open systems that interact with
an environment in a game-like manner, the synthesized pro-
gram has to enforce the specification no matter how the en-
vironment behaves; it is thus no longer a sequence of actions
but a tree-like object (that we will call strategy), and the syn-
thesis problem is more challenging. Variants of this problem
include supervisory control (Ramadge and Wonham 1987),
reactive synthesis (Pnueli and Rosner 1989) and nondeter-
ministic planning (Geffner and Bonet 2013).

One important difference between the different variants
of the problem is that some consider deterministic strategies
while others allow for nondeterministic ones, which pre-
scribe for each finite run a set of actions to choose from non-
deterministically. In particular this is the case in synthesis

with reactive environments (Kupferman et al. 2000), where
the environment can use nondeterministic strategies, and in
supervisory control (Ramadge and Wonham 1987) where
the synthesized controller not only is nondeterministic, but
also should allow as many behaviors as possible without
breaking the specification. Indeed, in the classic setting that
considers only safety objectives, the existence of a maxi-
mally permissive controller is always guaranteed (Wonham
2014). Note that it is the only type of objectives for which
this holds (Bernet, Janin, and Walukiewicz 2002).

The notion of maximal permissiveness is important also
because a more permissive system can more easily be re-
fined later on to make it satisfy additional requirements.
For instance, given a nondeterministic strategy that allows
only safe executions, one may want to refine it to, in ad-
dition, be sure to eventually reach a desired state of af-
fairs. Maximally permissive strategies have thus been stud-
ied in generalizations of supervisory control with speci-
fications that go beyond safety (Pinchinat and Riedweg
2005), but also in computational game theory in the formal
methods community (Bernet, Janin, and Walukiewicz 2002;
Bouyer et al. 2011) and in the community of reasoning
about actions (De Giacomo, Lespérance, and Muise 2012;
De Giacomo, Patrizi, and Sardiña 2013; Banihashemi, De
Giacomo, and Lespérance 2018).

The literature thus contains a plethora of different syn-
thesis problems. To provide a general framework to spec-
ify and solve such problems, Strategy Logic was intro-
duced in (Chatterjee, Henzinger, and Piterman 2010), and
extended to the multi-agent setting in (Mogavero et al.
2014). This very expressive logic treats strategies as first-
order objects, and can express a variety of complex syn-
thesis problems such as distributed synthesis, synthesis of
Nash equilibria or rational synthesis (Čermák et al. 2018;
Belardinelli et al. 2020; Berthon et al. 2020). However Strat-
egy Logic considers only deterministic strategies, and thus
cannot naturally capture problems such as supervisory con-
trol or synthesis with reactive environments.

In this work we introduce an extension of Strategy Logic
that allows for nondeterministic strategies and contains a re-
finement operator �. In the resulting logic, called SL≺,
formula x � y means that strategy x refines strategy y,
or in other words, that y is more permissive than x. Be-
cause quantification on deterministic strategies and maxi-
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mal permissiveness can be expressed using quantification on
nondeterministic strategies and the refinement operator, SL≺

strictly extends SL and can capture, in addition, all the syn-
thesis problems mentioned above. It can also express mod-
ule checking (Kupferman, Vardi, and Wolper 2001), and in
the context of multi-agent systems, SL≺ can be used to syn-
thesize maximally permissive Nash equilibria.

When the specification is expressed in a branching-time
logic such as CTL∗, formulas such as Eψ1 ∧ Eψ2 express
the existence of runs satisfying ψ1 and others satisfying ψ2.
When both the system and the environment use nondeter-
ministic strategies, it does not say however that the system
can choose to enforce ψ1 or ψ2 independently of what the
environment does. We show that this property, which we
call unilateral forcing, can be expressed in SL≺.

We solve the model-checking problem for SL≺, and es-
tablish that it is no harder than for classic SL. As it is usu-
ally the case for this kind of logics, the model-checking algo-
rithm for SL≺ can provide finite witness strategies when they
exist, such that we obtain a unified procedure to solve all
the synthesis problems from the literature mentioned above,
with optimal asymptotic complexity, and solve new ones,
such as nondeterministic synthesis with unilateral forcing,
of synthesis of maximally permissive Nash equilibria.

Plan. We introduce nondeterministic strategies and their
refinement in Section 2. In Section 3 we present the logic
SL≺, and in Section 4 we show how it captures a number
of problems, some existing and others new. The model-
checking procedure for SL≺ is presented in Section 5, and
we conclude in Section 6.

2 Nondeterministic Strategies
We first recall classic concurrent game structures, nondeter-
ministic strategies, and the notion of strategy refinement.

2.1 Notations
Let Σ be an alphabet. A finite (resp. infinite) word over Σ is
an element of Σ∗ (resp. Σω). The length of a finite nonempty
word w = w0w1 . . . wn is |w| := n+ 1, and last(w) := wn
is its last letter; the length of the empty word is 0. Given a
finite (resp. infinite) word w and 0 ≤ i < |w| (resp. i ∈ N),
we let wi be the letter at position i in w, w≤i is the prefix
of w that ends at position i and w≥i is the suffix that starts
at position i. We write w 4 w′ if w is a prefix of w′.The
domain of a mapping f is written dom(f).

2.2 Concurrent Game Structures
Let us fix AP, a finite non-empty set of atomic propositions,
and Ag, a finite non-empty set of agents or players.

Definition 1. A concurrent game structure (or CGS) is a
tuple G = (Ac, V, E, `, vι) where

• Ac is a finite non-empty set of actions,
• V is a finite non-empty set of positions,
• E : V × AcAg → V is a transition function,
• ` : V → 2AP is a labeling function, and
• vι ∈ V is an initial position.

In a position v ∈ V , where atomic propositions `(v) hold,
each player a chooses an action ca ∈ Ac, and the game
proceeds to position E(v, c), where c ∈ AcAg stands for the
joint action (ca)a∈Ag. Given a joint action c = (ca)a∈Ag
and a ∈ Ag, we let ca denote ca. A finite (resp. infinite)
play is a finite (resp. infinite) word ρ = v0 . . . vn (resp.
π = v0v1 . . .) such that v0 = vι and for every i such that
0 ≤ i < |ρ| − 1 (resp. i ≥ 0), there exists a joint action c
such that E(vi, c) = vi+1. Given two finite plays ρ and ρ′,
we say that ρ′ is a continuation of ρ if ρ′ ∈ ρ · V ∗, and we
write Cont(ρ) for the set of continuations of ρ. The size |G|
of a CGS G is its number of positions.
Remark 1. Recall that turn-based game structures can be
seen as a special case of concurrent game structures in
which, in each position, only one player’s actions are rel-
evant (Alur, Henzinger, and Kupferman 2002).

2.3 Strategy Refinement
Given a CGS G, a nondeterministic strategy, or strategy for
short, for a player is a function σ : Cont(vι) → 2Ac \ ∅ that
maps each finite play in G to a nonempty finite set of actions
that the player may choose from after this finite play. A
strategy σ is deterministic if for every finite play ρ, σ(ρ) is a
singleton. We let Str denote the set of all (nondeterministic)
strategies, and Strd ⊂ Str the set of deterministic ones (note
that these sets depend on the CGS under consideration).

Formulas of our logic SL≺ will be evaluated at the end
of a finite play ρ (which can be simply the initial position of
the game), and since SL≺ contains only future-time temporal
operators, the only relevant part of a strategy σ when evalu-
ating a formula after finite play ρ is its definition on continu-
ations of ρ. We thus define the restriction of σ to ρ as the re-
striction of σ to ρ·V ∗, that we write σ|ρ : Cont(ρ)→ 2Ac\∅.
We will then say that a strategy σ refines another strategy σ′
after a finite play ρ if the first one is more restrictive than the
second one on continuations of ρ. More formally:
Definition 2. Strategy σ refines strategy σ′ after ρ, written
σ �ρ σ′, if for every ρ′ ∈ Cont(ρ), σ|ρ(ρ′) ⊆ σ′|ρ(ρ

′). We
simply say that σ refines σ′ if it refines it after the initial
position vι, and in that case we write σ � σ′.

3 Strategy Logic with Refinement
We introduce SL≺, which extends SL with nondeterministic
strategies, an outcome quantifier that quantifies over possi-
ble outcomes of a strategy profile (both are already consid-
ered in (Berthon et al. 2020)), and more importantly, a refin-
ing operator that expresses that a strategy refines another.

3.1 Syntax
In addition to the sets of propositions AP and agents Ag, we
now fix Var, a finite non-empty set of variables.

Definition 3. The syntax of SL≺ is defined by the following
grammar:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | (a, x)ϕ | x � y | Eψ
ψ := ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP, x, y ∈ Var and a ∈ Ag.
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Formulas of type ϕ are called state formulas, those of type
ψ are path formulas, and SL≺ consists of all state formulas.

Temporal operators, X (next) and U (until), have their
usual meaning. The refinement operator expresses that a
strategy is more restrictive than another or, in other words,
that it allows less behaviors: x � y reads as “strategy x re-
fines strategy y”. The strategy quantifier ∃x has its usual
meaning, except that it now quantifies over nondeterminis-
tic strategies: ∃xϕ reads as “there exists a nondeterministic
strategy x such that ϕ holds”. As usual, the binding oper-
ator (a, x) assigns a strategy to an agent, and (a, x)ϕ reads
as “when agent a plays strategy x, ϕ holds”. Finally, the
outcome quantifier E quantifies on outcomes of strategies
currently in use: Eψ reads as “ψ holds in some outcome of
the strategies currently used by the players”. LTL is the frag-
ment of SL made of path formulas that use only Boolean and
temporal operators.

We use the following usual abbreviations > := p ∨ ¬p,
ϕ→ ϕ′ := ¬ϕ ∨ ϕ′, Aψ := ¬E¬ψ, Fϕ := >Uϕ, Gϕ :=
¬F¬ϕ and ∀xϕ := ¬∃x¬ϕ.

For every formula ϕ ∈ SL≺, we let free (ϕ) be the set of
variables that appear free in ϕ, i.e., that appear out of the
scope of a strategy quantifier. A formula ϕ is a sentence if
free (ϕ) is empty. Finally, we let the size |ϕ| of a formula ϕ
be the number of symbols in ϕ.

3.2 Semantics
SL≺ formulas are interpreted in a CGS, and the semantics
makes use of the following additional notions.

An assignment χ : Ag ∪ Var ⇀ Str is a partial function
that assigns a strategy to each player and strategy variable in
its domain. For an assignment χ, player a and strategy σ,
χ[a 7→ σ] is the assignment of domain dom(χ) ∪ {a} that
maps a to σ and is equal to χ on the rest of its domain, and
χ[x 7→ σ] is defined similarly, where x is a variable. We
write Ag(χ) for dom(χ)∩Ag, and Var(χ) for dom(χ)∩Var.
An assignment is variable-complete for a formula ϕ ∈ SL≺

if free (ϕ) ⊆ Var(χ).
For an assignment χ and a finite play ρ, we define the

outcomes of χ from ρ as the set of infinite plays that start
with ρ and are then extended by letting players follow the
strategies assigned by χ. Formally, we define Out(χ, ρ) as
the set of plays of the form ρ ·v1v2 . . . such that for all i ≥ 0,
there exists c such that for all a ∈ Ag(χ), it holds that ca ∈
χ(a)(ρ·v1 . . . vi) and vi+1 = E(vi, c), with v0 = last(ρ).

Definition 4. The semantics of a state (resp. path) formula
is defined on a CGS G, an assignment χ that is variable-
complete for ϕ, and a finite play ρ (resp. an infinite play π
and an index i ∈ N). The definition by mutual induction is
as follows (we omit Boolean cases):

G, χ, ρ |= p if p ∈ `(last(ρ))

G, χ, ρ |= ∃xϕ if ∃σ ∈ Str s.t. G, χ[x 7→ σ], ρ |= ϕ

G, χ, ρ |= (a, x)ϕ if G, χ[a 7→ χ(x)], ρ |= ϕ

G, χ, ρ |= x � y if χ(x) refines χ(y) after ρ
G, χ, ρ |= Eψ if ∃π ∈ Out(χ, ρ) s.t.

G, χ, π, |ρ| − 1 |= ψ

G, χ, π, i |= ϕ if G, χ, π≤i |= ϕ

G, χ, π, i |= Xψ if G, χ, π, i+ 1 |= ψ

G, χ, π, i |= ψUψ′ if ∃ j ≥ i s.t. G, χ, π, j |= ψ′ and,
∀ k s.t. i ≤ k < j, G, χ, π, k |= ψ

If ϕ is a sentence and G is a CGS with initial position vι,
then the empty assignment ∅ is variable-complete for ϕ and
we write G |= ϕ for G, ∅, vι |= ϕ.

We give some examples of useful notions that can be ex-
pressed in this logic.

Example 1 (Strategy equality). First, it is easy to see that
a strategy σ is equal to another strategy σ′ if σ � σ′ and
σ′ � σ. We thus define the abbreviation

x = y := x � y ∧ y � x

We have G, χ, ρ |= x = y if, and only if, χ(x)|ρ = χ(y)|ρ.
In particular, G, χ, vι |= x = y if, and only if, χ(x) = χ(y).
Let also x 6= y := ¬(x = y) and x ≺ y := x � y ∧ x 6= y.

Example 2 (Deterministic strategies). We can also express
that a strategy, or its refinement to continuations of the cur-
rent finite play, is deterministic, with the following formula:

det(x) := ∀y (y � x→ x � y)

In the following we will use the following notations to
express quantification on deterministic strategies:

∃d xϕ := ∃x(det(x) ∧ ϕ)

and ∀d xϕ := ∀x(det(x)→ ϕ)

Note that, as usual, we have ∀d xϕ ≡ ¬∃d x¬ϕ.

3.3 Outcomes as Strategy Refinements
Before stating our main result, we point out that the out-
come quantifier E is tightly linked to strategy refinement.
More precisely, selecting an individual outcome of an as-
signment χ amounts to choosing a deterministic strategy for
each player a ∈ Ag, such that for all a ∈ Ag(χ), σa � χ(a).
Indeed, fixing a deterministic strategy for each player fixes
a unique play, and the refinement constraint ensures that this
play follows the nondeterministic strategies assigned by χ.

Lemma 1. Let ψ be an LTL formula, G a CGS, ρ a finite
play in G and χ an assignment such that χ(a) = χ(xa) for
each a ∈ Ag(χ). It holds that

G, χ, ρ |= Eψ

iff

G, χ, ρ |= ∃d

a∈Ag
ya

∧
a∈Ag(χ)

ya � xa ∧ (a, ya)a∈AgAψ

Notice that in the last formula, Aψ could be replaced by
Eψ: indeed, after each agent a has been bound to determin-
istic strategy ya, there exists a unique outcome. This quanti-
fier is therefore superfluous and could be removed, writing ψ
instead of Aψ. This lemma thus shows that, from the point
of view of expressivity, having the refinement operator we
could get rid of the outcome quantifier. However this makes
formulas bigger and more complex to model check.
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3.4 Main Result
To state precisely the complexity of model checking SL≺ we
need the notion of simulation depth, introduced in (Berthon
et al. 2020). The rough idea is to count how many times one
has to transform an alternating automaton into a nondeter-
ministic one of exponential size, which can then be projected
to guess a strategy x (see (Berthon et al. 2020) for details).
The simulation depth sd(ϕ) of a formula ϕ is a pair (k, x)
where k is the number of nested simulations needed in the
automata construction for ϕ, and x ∈ {nd, alt} is the type of
automaton obtained (nondeterministic or alternating). We
write sdk(ϕ) and sdx(ϕ) for, respectively, the first and sec-
ond component of sd(ϕ). It is defined inductively as follows:

sd(p) := (0, nd) sd(¬ϕ) := (sdk(ϕ), alt)

sd(ϕ1 ∨ ϕ2) :=
(
maxi∈{1,2} sdk(ϕi), x

)
,

where x =

{
nd if sdx(ϕ1) = sdx(ϕ2) = nd
alt otherwise

sd(∃xϕ) := (k, nd),

where k =

{
sdk(ϕ) if sdx(ϕ) = nd
sdk(ϕ) + 1 otherwise

sd((a, x)ϕ) := sd(ϕ) sd(x � y) := (0, nd)

sd(Eψ) :=

{
(0, nd) if ψ ∈ LTL
(maxϕ∈max(ψ) sdk(ϕ), alt) otherwise

The case for x � y is new, and its definition reflects the
fact that this property can be checked with a simple deter-
ministic automaton (see the translation to QCTL∗ in Sec-
tion 5.1). We say that a formula ϕ has simulation depth k
if sdk(ϕ) = k. We now state the following result, which is
proved in Section 5.

Theorem 2. Model checking SL≺ is (k + 1)-EXPTIME-
complete for formulas of simulation depth at most k.
Remark 2. Defining ∃d xϕ as ∃x (det(x) ∧ ϕ), where
det(x) = ∀y (y � x → x � y), introduces a simulation
between ∃x and ∀y. This exponential can be avoided by
considering ∃d xϕ as a basic construct in the syntax, whose
translation to QCTL∗ is similar to that of ∃xϕ (see Sec-
tion 5.1), and whose simulation depth is defined as for ∃xϕ.

In the following section we show how SL≺ captures a
number of important problems related to nondeterministic
strategies and strategy refinement.

4 Applications of SL≺

In this section we show how our framework captures gener-
alizations of the classical LTL synthesis problem to the con-
text of nondeterministic strategies.

4.1 Reactive Synthesis
We first recall the standard LTL synthesis problem as defined
in (Pnueli and Rosner 1989): consider a set of input vari-
ables I controlled by the environment and a set of output
variables O controlled by the system. In each round, first
the environment chooses a valuation of the inputs ik ∈ 2I

(called input), and then the system reacts by choosing a val-
uation on the output variables ok ∈ 2O (called output); an
infinite word over 2I∪O is called an execution. The system
has perfect recall, meaning that its choices can depend on all
previous choices of the environment, and a strategy for the
system is thus a function S : (2I)+ → 2O. Given an infinite
sequence of inputs w = i0i1i2 . . . ∈ (2I)ω , we define the
execution S(w) = i0 ∪ o0, i1 ∪ o1, i2 ∪ o2 . . . where, for
each k ≥ 0, ok = S(i0 . . . ik).

The LTL synthesis problem consists in, given an LTL for-
mula ψ over atoms I ∪ O, synthesizing a (finite represen-
tation of a) system S : (2I)+ → 2O such that for all
w = i0i1i2 . . . ∈ (2I)ω it holds that S(w) |= ψ. This prob-
lem can be coded in Strategy Logic: one builds a turn-based
game arena GI,O (which can be represented as a CGS, see
Remark 1) with two players, E (for Environment) and S (for
System) in which first the environment chooses an input i,
then the system chooses an output o, reaching a position la-
beled with atoms i ∪ o and in which it is the environment’s
turn to play. The LTL synthesis problem for (I,O, ψ) can
then be solved by model-checking on GI,O the SL≺ formula

ϕd
synth(ψ) := ∃d x. ∀d y.(S, x)(E, y)Aψ

Note that this really solves the synthesis problem as exist-
ing model-checking algorithms for Strategy Logic can syn-
thesize witness strategies (when they exist) for strategy vari-
ables existentially quantified at the beginning of the formula.
Rewriting ϕd

synth(ψ) as ∃d x.¬∃d y.(S, x)(E, y)E¬ψ we see
that it has simulation depth 1 (see Remark 2) and thus can be
solved by the model-checking algorithm for SL≺ in doubly
exponential time (Theorem 2), which is optimal since LTL
synthesis is 2EXPTIME-complete (Pnueli and Rosner 1989).

Note also that in the case of deterministic strategies, fixing
a strategy for each player fixes a unique outcome, and thus
Aψ in the formula above could be replaced by Eψ without
affecting the semantics. Also, once a deterministic strategy
x is fixed for S, each deterministic strategy y for E fixes
an outcome of strategy x, and each outcome of x can be
obtained by fixing a deterministic strategy y for E. It then
follows by the semantics of the outcome quantifier A that,
when considering only deterministic strategies, ϕd

synth(ψ) is
equivalent to ∃d x(S, x)Aψ.

4.2 Nondeterministic Synthesis
Considering nondeterministic strategies, as we do, does not
change anything for classical LTL synthesis. Indeed, con-
sider the following formula:

ϕnd
synth(ψ) := ∃x.∀y.(S, x)(E, y)Aψ

which differs from ϕd
synth(ψ) only in that it now allows for

nondeterministic strategies. It is easy to check that:
Proposition 3. For every LTL formula ψ,

GI,O |= ϕd
synth(ψ) iff GI,O |= ϕnd

synth(ψ)

However it makes a difference if, instead of considering
only universal satisfaction of an LTL formula on all out-
comes, we consider other forms of branching-time specifi-
cations, in particular specifications that require existence of
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p

a, · b, ·

· , · · , ·

Figure 1: Model G1, that satisfies ϕ′
1 and ϕ2

outcomes satisfying different properties, sometimes called
possibility requirements (Kupferman and Vardi 1997).

For instance,

ϕ1 := ∃d x(S, x) ∀d y(E, y)(EGp ∧EF¬p)

is always false, because a pair of deterministic strategies for
the system and the environment determine a unique outcome
that cannot satisfy both Gp and F¬p. However

ϕ′1 := ∃x(S, x)∀y(E, y)(EGp ∧EF¬p)

can be true: for instance in model G1 depicted in Figure 1,
where the initial position is marked by an incoming arrow
and ’·’ stands for any possible action. In this model where
the environment’s actions are indifferent, it is clear that the
nondeterministic strategy that allows both a and b in the ini-
tial position is a witness for x that satisfies ϕ′1. We write
this strategy σa,b, and we let σa and σb be the determinis-
tic strategies that allow respectively only a and only b in the
initial position (which is the only relevant part in this CGS).

If ϕ is a CTL∗ formula, we now let

ϕnd
synth(ϕ) := ∃x.∀y.(S, x)(E, y)ϕ

We can combine the two kinds of specifications (exis-
tential and universal) by requiring the existence of behav-
iors satisfying some properties, while requiring that all be-
haviors satisfy some other property. For instance, formula
ϕnd

synth(EFp∧EFq∧AGF(p∨q)) asks that some outcomes
reach p, some reach q, and all outcomes go infinitely often
through p or q.

For arbitrary CTL∗ specifications ϕ, formula ϕnd
synth(ϕ)

captures the supervisory control problem for CTL∗ as de-
fined in (Kupferman et al. 2000), where it is proved to be
3EXPTIME-complete. This formula has simulation depth
at most 2, and thus the model-checking algorithm for SL≺

has optimal complexity. The same complexity is proved
in (Jiang and Kumar 2006) in a slightly different setting. If
one changes ∃x for ∃d x in ϕnd

synth(ϕ), one obtains instead the
synthesis problem with reactive environments, also studied
in (Kupferman et al. 2000), which has the same complexity.

4.3 Unilateral Forcing
We want to clarify what the synthesis problem with non-
deterministic strategies as defined by ϕnd

synth(ϕ) means when

p

a, a
b, b

a, b
b, a

· , · · , ·

Figure 2: Model G2, that satisfies ϕ′
1 but not ϕ2

ϕ involves possibility requirements of the form Eψ. Take
for instance formula ϕnd

synth(EGp ∧ EF¬p), and consider
the CGS G2 depicted in Figure 2. It is the case that G2 |=
ϕnd

synth(EGp∧EF¬p), as witnessed by the strategy σa,b that
allows both a and b in the initial state. Indeed, if the system
follows σa,b, then for any strategy σ′ for the environment,
there exists an outcome that satisfies Gp and one that sat-
isfies F¬p. In case strategy σ′ is deterministic, the system
can choose which kind of outcome to obtain: if σ′ plays a in
the initial position, and the system knows it, then the system
can enforce Gp by playing a in the initial position, which is
allowed by its strategy σ, or it can choose to enforce F¬p
by playing b, also allowed by σ. If however the environment
uses the nondeterministic strategy σa,b, then the system can-
not unilaterally choose which possibility to enforce.

However, the ability to choose unilaterally can also be ex-
pressed in SL≺, once more using the refinement operator.
Define the following formula, where ψ is an LTL formula:

Force(x, ψ) := ∃d y. y � x ∧ (S, y)Aψ

Now consider the formula

ϕ2 := ∃x(S, x)∀y(E, y)(Force(x,Gp) ∧ Force(x,F¬p))

It is easy to see that ϕ2 implies ϕnd
synth(EGp∧EF¬p), but

the converse is not true. When ϕ2 holds it means, in addi-
tion to the existence of the two types of outcomes, that the
system can unilaterally choose which of Gp or F¬p should
hold, by picking one deterministic refinement of its nonde-
terministic strategy. For instance ϕ2 holds on G1: if the sys-
tem uses σa,b, it can choose to enforce Gp by refining it to
σa, or enforce F¬p by refining it to σb. In both cases, the
property will hold no matter how the environment behaves.
However, ϕ2 does not hold on G2: assume first that the sys-
tem uses one of the deterministic strategies σa and σb; if
the environment also picks a deterministic strategy, it fixes
a unique outcome and thus Force(x,Gp) ∧ Force(x,F¬p)
does not hold. Now assume the system uses σa,b. If the envi-
ronment also picks σa,b, then Force(x,Gp)∧Force(x,F¬p)
does not hold: indeed, the only deterministic refinements of
σa,b are σa and σb, and for any of these, the outcome (Gp or
F¬p) depends on which action the environment picks from
its nondeterministic strategy σa,b.

This shows that ϕ2 is indeed a stronger requirement than
ϕ1, which holds on both G1 and G2.
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So in synthesis with nondeterministic strategies, we can
require strategies that allow for different types of behaviors,
and we have seen that we can also require that the system be
able to choose which kind of behavior to enforce by refin-
ing its strategy. It is then natural to look for strategies that
allow for as many behaviors as possible while satisfying the
specification. Such strategies are usually called maximally
permissive in the literature.

4.4 Maximally Permissive Synthesis
Different definitions of maximally permissive strategies ex-
ist. In supervisory control theory (Ramadge and Wonham
1987), maximality is expressed in terms of inclusion of sets
of behaviors/outcomes, or equivalently by referring to sim-
ulation between the unfoldings of the systems where unau-
thorized transitions have been pruned, as in (Pinchinat and
Riedweg 2005). In (Bernet, Janin, and Walukiewicz 2002),
strategies are also compared by looking at inclusion of the
behaviors/outcomes they allow. However, as it is proved
in (Bernet, Janin, and Walukiewicz 2002), the existence of
maximally permissive strategies for this notion of maximal-
ity is ensured only for simple safety games.

For this reason an alternative notion of strategy permis-
siveness was introduced in (Bouyer et al. 2009) for reacha-
bility games and further studied in (Bouyer et al. 2011) for
parity games. In this setting, to each transition in a game
is attached a cost that represents the penalty incurred by a
strategy that does not allow this transition, and a maximally
permissive strategy is one that minimizes penalties.

The latter definition ensures that maximally permissive
strategies always exist, but the quantitative aspects involved,
which are close to mean-payoff games (Gurvich, Karzanov,
and Khachivan 1988), are known to quickly lead to undecid-
ability when introduced in Strategy Logic (Gardy 2017). As
for the definition based on inclusion of outcomes, it makes
sense in the two-player antagonistic setting; but it is not
adapted to our multi-player setting, where the set of out-
comes induced by a strategy depends on which agent uses
it, and which other agents have a defined strategy.

For this reason we consider the following natural defini-
tion of permissiveness based on refinement of strategies:
Definition 5. Strategy σ′ is more permissive than strategy σ
if σ ≺ σ′.

Given a formula ϕ(x), we can now express that a strategy
x is maximally permissive with regards to ϕ(x), i.e., that it
satisfies ϕ(x) and that no more permissive strategy satisfies
it. Define formula MaxPerm(x, ϕ) as follows:

MaxPerm(x, ϕ) := ϕ(x) ∧ (∀y x ≺ y → ¬ϕ(y))

For instance, coming back to the framework of reactive syn-
thesis, if the specification is a CTL∗ formula ϕ, it holds that
G, χ, vι |= MaxPerm(x, ∀z(S, x)(E, z)ϕ) if, and only if,
χ(x) is a maximally permissive system for specification ϕ.

Maximally permissive synthesis for a specification ϕ ∈
CTL∗ can thus by expressed by the following SL≺ formula:

ϕmax
synth(ϕ) := ∃x(a, x)MaxPerm(x, ∀z(S, x)(E, z)ϕ)

When the formula is true, our model-checking algorithm
can also produce a maximally permissive witness strategy

for x. If ϕ is a CTL∗ formula, ϕmax
synth has simulation depth

at most 3, and thus we obtain a 4EXPTIME upper-bound for
this problem. We do not have the lower bounds, but we con-
jecture that one cannot do better, as the problem is already
3EXPTIME-complete without the constraint of maximal per-
missiveness (see Section 4.2), which seems to add one ex-
ponential to the complexity. However it can be reduced to
3EXPTIME for LTL specifications, i.e., when ϕ = Aψ with
ψ ∈ LTL (we omit details for lack of space).

4.5 Strategy Refinement
One problem that is of interest in AI is that of producing
plans that enforce some safety property, and in addition can
at any time be refined to reach some secondary goal (Wright,
Mattmüller, and Nebel 2018; Gerevini and Percassi 2019).
For instance, consider an electric vehicle transporting rocks
from a point A, where they are cut, to a point B, where they
are used. The truck must ensure that the stock of rocks at
point B never runs out (this is a safety property). We would
like to synthesize a strategy for the truck such that this prop-
erty is satisfied, but also so that at any time, the strategy can
be refined to make the truck go through point C, where its
battery can be reloaded. The fact that the strategy to reload
refines the initial one ensures that the main property remains
satisfied, i.e., it remains true that B will not run out even
when the truck decides to go and reload. We can express
this problem in SL≺ as follows, where “empty” holds when
there are no more rocks in point B, and “reload” means that
the truck is at point C, reloading its battery.

ϕref := ∃x(truck, x)AG
(
¬empty∧

(∃y.y � x ∧ (truck, y)AFreload)
)

The simulation depth for ϕref is 2, and by Theorem 2 we
obtain a 3EXPTIME upper bound for this problem, where
AFreload can be replaced by arbitrary CTL∗ formulas.
However for the particular formula ϕref we can simplify the
procedure to obtain a synthesis algorithm that runs in single
exponential time (we omit details for lack of space).

4.6 Module Checking
Module checking (Kupferman, Vardi, and Wolper 2001;
Jamroga and Murano 2014) is a generalisation of model
checking to the setting of open systems, i.e., systems that
interact with an environment. In this problem the system’s
nondeterministic strategy is fixed, and fixing a nondetermin-
istic strategy for the environment thus yields a computation
tree which is a pruning of the full system’s computation tree.
The problem then consists in checking that a property, spec-
ified for instance in CTL∗, holds in all such computation
trees. The module-checking problem for a CTL∗ formula ϕ
can be written as follows in SL≺:

ϕmod := ∀y(E, y)ϕ

Solving the module-checking problem for CTL∗ specifi-
cations can thus be done by model checking ϕmod. This for-
mula has simulation depth 1, and the procedure thus runs
in doubly exponential time, which is asymptotically opti-
mal (Kupferman, Vardi, and Wolper 2001).
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4.7 Multi-agent Setting
One advantage of Strategy Logic is that it can naturally
express complex game-theoretic solution concepts such as
Nash equilibria or subgame-perfect equilibria. Since in SL≺

we can express that a strategy profile (i.e., a strategy for
each agent) refines another, we can also reason about re-
finements of such equilibria, and even synthesise maximally
permissive equilibria. Assume that Ag = {ai : i ∈ [1, n]},
each agent ai has objective ψi ∈ LTL, and (a,x) stands
for (a1, x1) . . . (an, xn) where a = (ai)i∈[1,n] and x =
(xi)i∈[1,n]. Consider for instance the formula

ϕNE(x) := (a,x)
∧
i∈[n]

[(
∃d yi(ai, yi)Aψi

)
→ Aψi

]
Formula ϕNE holds with assignment χ if, and only if,

(χ(xi))i∈[1,n] is a Nash equilibrium. A profile y is more
permissive than x if each yi is at least as permissive as xi,
and and at least one refinement is strict. We thus let

x ≺ y := ∧i∈[1,n]xi � yi ∧ ∨i∈[1,n]xi ≺ yi
Now generalise formula MaxPerm(x, ϕ) from Section 4.4
as follows:

MaxPermn(x, ϕ) := ϕ(x) ∧ (∀d y. x ≺ y → ¬ϕ(y))

Synthesis of a maximally permissive Nash equilibrium can
now be expressed with the following formula:

∃d xMaxPermn(x, ϕNE(x))

This formula having simulation depth 3, we obtain a 4EXP-
TIME upper bound on the complexity of this problem.

We can also generalise the notion of unilateral forcing
from Section 4.3 by requiring that a subset of agents can
together enforce a possibility by refining their strategies.

5 Model Checking SL≺

We now turn to establishing that the model-checking prob-
lem for SL≺ is decidable. To do so we extend the clas-
sic approach, which is to reduce to QCTL∗, the extension
of CTL∗ with quantification on atomic propositions. This
logic is equivalent to MSO on infinite trees (Laroussinie and
Markey 2014), and it is easy to express that a strategy (or the
atomic propositions that code for it) refines another one.
Definition 6. The syntax of QCTL∗ is defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Eψ | ∃pϕ
ψ := ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP.
Again, formulas of type ϕ are called state formulas, those

of type ψ are called path formulas, and QCTL∗ consists of
all the state formulas defined by the grammar, and we use
standard abbreviation Aψ := ¬E¬ψ.

The models of QCTL∗ are classic Kripke structures:
Definition 7. A Kripke structure, or KS, over AP is a tuple
S = (S,R, `, sι) where S is a set of states, R ⊆ S × S is
a left-total1 transition relation, ` : S → 2AP is a labeling
function and sι ∈ S is an initial state.

1i.e., for all s ∈ S, there exists s′ such that (s, s′) ∈ R.

A path in S is an infinite sequence of states λ = s0s1 . . .
such that for all i ∈ N, (si, si+1) ∈ R. A finite path is a
finite non-empty prefix of a path. Similar to continuations
of finite plays, given a finite path λ we write Cont(λ) for
the set of finite paths that start with λ. The size |S| of a KS
S = (S,R, sι, `) is its number of states: |S| := |S|.

Since we will evaluate QCTL∗ formulas on tree-
unfoldings of Kripke structures, we need the following defi-
nitions for infinite trees.

Trees. Let X be a finite set of directions (typically a set
of states). An X-tree τ is a nonempty set of words τ ⊆ X+

such that (1) there exists r ∈ X , called the root of τ , such
that each u ∈ τ starts with r (r 4 u); (2) if u · x ∈ τ and
u · x 6= r, then u ∈ τ ; (3) if u ∈ τ then there exists x ∈ X
such that u · x ∈ τ .

The elements of a tree τ are called nodes. If u · x ∈ τ ,
we say that u · x is a child of u. A path in τ is an infinite
sequence of nodes λ = u0u1 . . . such that for all i ∈ N, ui+1

is a child of ui, and Paths(u) is the set of paths that start in
node u.

An AP-labeledX-tree, or (AP, X)-tree for short, is a pair
t = (τ, `), where τ is an X-tree called the domain of t and
` : τ → 2AP is a labeling, which maps each node to the
set of propositions that hold in it. For p ∈ AP, a p-labeling
for a tree is a mapping `p : τ → {0, 1} that indicates in
which nodes p holds, and for a labeled tree t = (τ, `), the
p-labeling of t is the p-labeling u 7→ 1 if p ∈ `(u), 0 oth-
erwise. The composition of a labeled tree t = (τ, `) with
a p-labeling `p for τ is defined as t ⊗ `p := (τ, `′), where
`′(u) = `(u) ∪ {p} if `p(u) = 1, and `(u) \ {p} otherwise.
A p-labeling for a labeled tree t = (τ, `) is a p-labeling for
its domain τ . A pointed labeled tree is a pair (t, u) where u
is a node of t.

Let S = (S,R, `, sι) be a Kripke structure over AP. The
tree-unfolding of S is the (AP, S)-tree tS := (τ, `′), where
τ is the set of all finite paths that start in sι, and for every
u ∈ τ , `′(u) := `(last(u)).

Definition 8. We define by induction the satisfaction rela-
tion |= of QCTL∗. Let t = (τ, `) be an AP-labeled tree, u a
node and λ a path in τ (we omit Boolean cases):

t, u |= p if p ∈ `(u)
t, u |= Eψ if ∃λ ∈ Paths(u) s.t. t, λ |= ψ
t, u |= ∃pϕ if ∃ `p a p-labeling for t s.t.

t⊗ `p, u |= ϕ
t, λ |= ϕ if t, λ0 |= ϕ
t, λ |= Xψ if t, λ≥1 |= ψ
t, λ |= ψUψ′ if ∃ i ≥ 0 s.t. t, λ≥i |= ψ′ and

∀j s.t. 0 ≤ j < i, t, λ≥j |= ψ

We write t |= ϕ for t, r |= ϕ, where r is the root of t.
Given a KS S and a QCTL∗ formula ϕ, we write S |= ϕ if
tS |= ϕ. The simulation depth for QCTL∗ is defined exactly
as for SL≺, with the case for ∃pϕ corresponding to ∃xϕ.
The following is proved in (Laroussinie and Markey 2014):

Theorem 4. Model checking QCTL∗ is (k + 1)-EXPTIME-
complete for formulas of simulation depth at most k.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

300



5.1 Reduction to QCTL∗

We use a variant of the reductions presented in (Laroussinie
and Markey 2015; Fijalkow et al. 2018; Berthon et al. 2017;
Maubert and Murano 2018; Bouyer et al. 2019), which
transform instances of the model-checking problem for var-
ious strategic logics to (extensions of) QCTL∗.

Let (G,Φ) be an instance of the SL model-checking prob-
lem, and assume without loss of generality that each strategy
variable is quantified at most once in Φ. We define an equiv-
alent instance of the model-checking problem for QCTL∗.

Define the KS SG := (S,R, sι, `
′) where

• S := {sv | v ∈ V },
• R := {(sv, sv′) | ∃c ∈ AcAg s.t. E(v, c) = v′} ⊆ S2,
• sι := svι , and
• `′(sv) := `(v) ∪ {pv} ⊆ AP ∪ APv .

For every finite play ρ = v0 . . . vk, define the node uρ :=
sv0 . . . svk in tSG . The mapping ρ 7→ uρ defines a bijection
between the set of finite plays and the set of nodes in tSG .

We now describe how to transform an SL≺ formula ϕ
and a partial function f : Ag ⇀ Var into a QCTL∗ for-
mula (ϕ) fs (that will also depend on G). Suppose that
Ac = {c1, . . . , cl}, and define (ϕ) fs and (ψ) fp by mutual
induction on state and path formulas. The base cases are
as follows: (p) fs := p and (ϕ) fp := (ϕ) fs . Boolean and
temporal operators are simply obtained by distributing the
translation: (¬ϕ) fs := ¬(ϕ) fs , (¬ψ) fp := ¬(ψ) fp , (ϕ1 ∨
ϕ2) fs := (ϕ1) fs ∨ (ϕ2) fs , (ψ1 ∨ ψ2) fp := (ψ1) fp ∨ (ψ2) fp ,
(Xψ) fp := X(ψ) fp and (ψ1Uψ2) fp := (ψ1) fpU(ψ2) fp .

We continue with the strategy quantifier:

(∃xϕ) fs := ∃pxc1 . . . ∃p
x
cl
.ϕstr(x) ∧ (ϕ) fs

where ϕstr(x) := AG
∨
c∈Ac p

x
c and

(∃d xϕ) fs := ∃pxc1 . . . ∃p
x
cl
.ϕdet

str (x) ∧ (ϕ) fs

where ϕdet
str (x) := AG

∨
c∈Ac(p

x
c ∧

∧
c′ 6=c ¬pxc′).

The intuition is that for each possible action c ∈ Ac,
an existential quantification on the atomic proposition pxc
“chooses” for each node uρ of the tree tSG whether strategy
x allows action c in ρ or not. ϕstr(x) checks that at least one
action is allowed in each node, and thus that atomic propo-
sitions pxc indeed define a (nondeterministic) strategy. For-
mula ϕdet

str (x) instead ensures that exactly one action is cho-
sen for strategy x in each finite play, and thus that atomic
propositions pxc characterise a deterministic strategy.

For strategy refinement, the translation is as follows:

(x � y) fs := AG
∧
c∈Ac

pxc → pyc .

Here are the remaining cases:

((a, x)ϕ) fs := (ϕ)
f [a 7→x]
s for x ∈ Var

and (Eψ) fs := E (ψ fout ∧ (ψ) fp ), where

ψ fout := G
∨
v∈V

(
pv ∧

∨
c∈AcAg

(
∧

a∈dom(f)

pf(a)ca ∧X pE(v,c))
)
.

Formula ψ fout checks that each player a in the domain of
f follows the strategy coded by the pf(a)c .

To prove the correctness of the translation we need some
additional definitions. First, given a strategy σ and a strategy
variable x we let `xσ := {`pxc | c ∈ Ac} be the family of pxc -
labelings for tree tSG defined as follows: for each finite play
ρ and c ∈ Ac, we let `pxc (uρ) := 1 if c ∈ σ(ρ), 0 otherwise.
For a labeled tree t with same domain as tSG we write t⊗ `xσ
for t⊗ `pxc1 ⊗ . . .⊗ `pxcl .

Second, given an infinite play π and a point i ∈ N, we let
λπ,i be the infinite path in tSG that starts in node uπ≤i and is
defined as λπ,i := uπ≤iuπ≤i+1

uπ≤i+2
. . .

Finally, we say that a partial function f : Ag ⇀ Var is
compatible with an assignment χ if dom(χ)∩Ag = dom(f)
and for all a ∈ dom(f), χ(a) = χ(f(a)).
Proposition 5. For every state subformula ϕ and path sub-
formula ψ of Φ, finite play ρ, infinite play π, point i ∈ N, for
every assignment χ variable-complete for ϕ (resp. ψ) and
partial function f : Ag ⇀ Var compatible with χ, assuming
also that no xi in dom(χ)∩Var = {x1, . . . , xk} is quantified
in ϕ or ψ, we have

G, χ, ρ |= ϕ iff tSG ⊗ `
x1

χ(x1)
⊗ . . . `xkχ(xk), uρ |= (ϕ) fs

G, χ, π, i |= ψ iff tSG ⊗ `
x1

χ(x1)
⊗ . . . `xkχ(xk), λπ,i |= (ψ) fp

In addition, SG is of size linear in |G|, and (ϕ) fs and (ψ) fp
are of size linear in |G|2 + |ϕ|.

Proof. The proof is by induction on ϕ. We detail the case
for binding, strategy quantification, strategy refinement and
outcome quantification, the others follow simply by defini-
tion of SG for atomic propositions and induction hypothesis
for remaining cases.

For ϕ = x � y, assume that G, χ, ρ |= x � y. First,
observe that since χ is variable-complete for ϕ, x and y are
in dom(χ). Now we have that χ(x)|ρ(ρ

′) ⊆ χ(y)|ρ(ρ
′) for

every ρ′ ∈ Cont(ρ). By definition of `xχ(x) = {`pxc | c ∈ Ac}
and `yχ(y) = {`pyc | c ∈ Ac}, it follows that for each c ∈ Ac
and ρ′ ∈ Cont(ρ), if `pxc (ρ′) = 1, then `pyc (ρ′) = 1, and thus

tSG ⊗ `xχ(x) ⊗ `
y
χ(y) |= AG

∧
c∈Ac

pxc → pyc

The result then holds since the labellings `xχ(x) touch distinct
sets of atomic propositions for each variable x in Var(χ).

For the other direction let t = tSG ⊗ `
x1

χ(x1)
⊗ . . .⊗ `xkχ(xk)

and assume that

t, uρ |= AG
∧
c∈Ac

pxc → pyc .

This implies that for every ρ′ ∈ Cont(ρ),

t, uρ′ |=
∧
c∈Ac

pxc → pyc ,

and thus χ(x)|ρ refines χ(y)|ρ.

For ϕ = (a, x)ϕ′, we have G, χ, ρ |= (a, x)ϕ′ if and only
if G, χ[a 7→ χ(x)], ρ |= ϕ′. The result follows by using the
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induction hypothesis with assignment χ[a 7→ x] and func-
tion f [a 7→ x]. This is possible because f [a 7→ x] is com-
patible with χ[a 7→ x]: indeed dom(χ[a 7→ x]) ∩ Ag is
equal to dom(χ)∩Ag∪ {a} which, by assumption, is equal
to dom(f) ∪ {a} = dom(f [a 7→ x]). Also by assumption,
for all a′ ∈ dom(f), χ(a′) = χ(f(a′)), and by definition
χ[a 7→ χ(x)](a) = χ(x) = χ(f [a 7→ x](a)).

For ϕ = ∃xϕ′, assume first that G, χ, ρ |= ∃xϕ′. There
exists a nondeterministic strategy σ such that

G, χ[x 7→ σ], ρ |= ϕ′.

Since f is compatible with χ, it is also compatible with as-
signment χ′ = χ[x 7→ σ]. By assumption, no variable in
{x1, . . . , xk} is quantified in ϕ, so that x 6= xi for all i, and
thus χ′(xi) = χ(xi) for all i; and because no strategy vari-
able is quantified twice in a same formula, x is not quantified
in ϕ′, so that no variable in {x1, . . . , xk, x} is quantified in
ϕ′. By induction hypothesis

tSG ⊗ `
x1

χ′(x1)
⊗ . . .⊗ `xkχ′(xk) ⊗ `

x
χ′(x), uρ |= (ϕ′) fs .

It follows that

tSG⊗`
x1

χ′(x1)
⊗. . .⊗`xkχ′(xk), uρ |= ∃p

x
c1 . . . p

x
cl
.ϕstr(x)∧(ϕ′) fs

Finally, since χ′(xi) = χ(xi) for all i, we conclude that

tSG ⊗ `
x1

χ(x1)
⊗ . . .⊗ `xkχ(xk), uρ |= (∃xϕ′) fs .

For the other direction, assume that

tSG ⊗ `
x1

χ(x1)
⊗ . . .⊗ `xkχ(xk), uρ |= (ϕ) fs ,

and recall that (ϕ) fs = ∃pxc1 . . . ∃p
x
cl
.ϕstr(x) ∧ (ϕ′) fs . Write

t = tSG ⊗ `
x1

χ(x1)
⊗ . . . ⊗ `xkχ(xk). There exist `pxc -labelings

such that

t⊗ `pxc1 ⊗ . . .⊗ `pxcl |= ϕstr(x) ∧ (ϕ′) fs .

By ϕstr(x), these labelings code for a strategy σ. Let χ′ =
χ[x 7→ σ]. For all 1 ≤ i ≤ k, by assumption x 6= xi, and
thus χ′(xi) = χ(xi). The above can thus be rewritten

tSG ⊗ `
x1

χ′(x1)
⊗ . . .⊗ `xkχ′(xk) ⊗ `

x
χ′(x) |= ϕstr(x) ∧ (ϕ′) fs .

By induction hypothesis we have G, χ[x 7→ σ], ρ |= ϕ′,
hence G, χ, ρ |= ∃xϕ′.

For ϕ = ∃d xϕ the proof is similar, using ϕdet
str (x) instead

of ϕstr(x).

For ϕ = Eψ, assume that G, χ, ρ |= Eψ. There exists a
play π ∈ Out(χ, ρ) s.t. G, χ, π, |ρ| − 1 |= ψ. By induction
hypothesis,

tSG ⊗ `
x1

χ(x1)
⊗ . . .⊗ `xkχ(xk), λπ,|ρ|−1 |= (ψ) fp .

Since π is an outcome of χ, each agent a ∈ dom(χ) ∩ Ag
follows strategy χ(a) in π. Because dom(χ)∩Ag = dom(f)
and for all a ∈ dom(f), χ(a) = χ(f(a)), each agent
a ∈ dom(f) follows the strategy χ(f(a)), which is coded
by atoms pf(a)c in the translation of Φ. Therefore λπ,|ρ|−1
also satisfies ψ χout, hence

tSG ⊗ `
x1

χ(x1)
⊗ . . .⊗ `xkχ(xk), λπ,|ρ|−1 |= ψ χout ∧ (ψ) fp .

For the other direction, assume that

tSG ⊗ `
x1

χ(x1)
⊗ . . .⊗ `xkχ(xk), uρ |= E(ψ fout ∧ (ψ) fp ).

There exists a path λ in tSG⊗`
x1

χ(x1)
⊗ . . .⊗`xkχ(xk) starting in

node uρ that satisfies both ψ fout and (ψ) fp . By construction of
SG there exists an infinite play π such that π≤|ρ|−1 = ρ and
λ = λπ,|ρ|−1. By induction hypothesis, G, χ, π, |ρ|−1 |= ψ.
Because λπ,|ρ|−1 satisfies ψ fout, dom(χ)∩Ag = dom(f), and
for all a ∈ dom(f), χ(a) = χ(f(a)), it is also the case that
π ∈ Out(χ, ρ), hence G, χ, ρ |= Eψ.

Applying Proposition 5 to the sentence Φ, ρ = vι, any
assignment χ, and the empty function ∅, we get:

G |= Φ if and only if tSG |= (Φ) ∅s .

To obtain the upper bounds of Theorem 2, we use the
above equivalence, Theorem 4, and the fact that the trans-
lation () fs preserves simulation depth, modulo the following
details: We have (∃xϕ) fs = ∃pxc1 . . . ∃p

x
cl
.ϕstr(x) ∧ (ϕ) fs ,

and because of the conjunction sdx(ϕstr(x)∧ (ϕ) fs ) = alt. It
follows that when sdx(ϕ) = nd, sdk((∃xϕ) fs ) is one more
than sdk(∃xϕ). But in this precise case conjunction does
not introduce alternation, and if the automaton for (ϕ) fs
is nondeterministic we can obtain a nondeterministic au-
tomaton for ϕstr(x) ∧ (ϕ) fs without incurring an exponen-
tial blowup. The reason is that ϕstr(x) can be recognized by
a very simple deterministic tree automaton (see (Berthon et
al. 2020, p.30) for details). The case for ∃d xϕ is similar.
For x � y we have (x � y)s = AG

∧
c∈Ac p

x
c → pyc hence

sdx((x � y)s) = alt, but sdx(x � y) = nd. Again, in
this particular case, one can obtain a deterministic automa-
ton with two states for (x � y)s, which solves the matter.

The lower bounds of Theorem 2 are inherited from those
for SL without refining operator (Berthon et al. 2020).

6 Conclusion
In this work we extended Strategy Logic with nondetermin-
istic strategies and a refinement operator that expresses that
a strategy is more permissive than another. We showed how
the resulting logic SL≺ captures in a natural manner a vari-
ety of problems previously not expressible in Strategy Logic,
such as module checking, synthesis with reactive environ-
ments or synthesis of maximally permissive strategies. We
also showed how the refinement operator allows us to spec-
ify meaningful requirements for nondeterministic synthesis
that are not expressible in CTL∗, such as unilateral forcing.
We solved the model-checking problem for SL≺ by reduc-
tion to QCTL∗, and we established its complexity in terms
of the simulation depth of the formulas. This precise mea-
sure shows that, for the problems from the literature whose
precise complexity is known, the synthesis procedures that
we obtain via SL≺ have optimal complexity. The model-
checking algorithm for SL≺ also provides synthesis proce-
dures for problems that, up to our knowledge, have not been
solved before, such as synthesis with unilateral forcing spec-
ifications or synthesis of maximally permissive Nash equi-
libria. As future work we plan to establish the precise com-
plexity of these problems to see if our procedure is optimal.
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