
Preference-based Inconsistency-Tolerant Query Answering
under Existential Rules

Marco Calautti1 , Sergio Greco2 , Cristian Molinaro2 , Irina Trubitsyna2

1DISI, University of Trento, Italy
2DIMES, University of Calabria, Italy

marco.calautti@unitn.it, {greco,cmolinaro,trubitsyna}@dimes.unical.it

Abstract

Query answering over inconsistent knowledge bases is a
problem that has attracted a great deal of interest over the
years. Different inconsistency-tolerant semantics have been
proposed, and most of them are based on the notion of repair,
that is, a “maximal” consistent subset of the database. In gen-
eral, there can be several repairs, so it is often natural and
desirable to express preferences among them. In this paper,
we propose a framework for querying inconsistent knowledge
bases under user preferences for existential rule languages.
We provide generalizations of popular inconsistency-tolerant
semantics taking preferences into account and study the data
and combined complexity of different relevant problems.

1 Introduction
The problem of querying inconsistent knowledge bases has
been investigated for many years. Different inconsistency-
tolerant semantics have been proposed in the literature, that
is, approaches to provide meaningful query answers despite
the knowledge base being inconsistent.

Several popular semantics rely on the notion of repair,
which is a “maximal” consistent subset of the database.
Since inconsistency can be resolved in different ways, in
general there are multiple repairs, which are then used in
various ways to determine “valid” query answers. For in-
stance, the ABox repair (AR) semantics (Arenas, Bertossi,
and Chomicki 1999; Lembo et al. 2010) considers a query
answer valid if it can be inferred from each of the repairs
of the knowledge base. The intersection of repairs (IAR)
semantics (Lembo et al. 2010) considers an answer valid if
it can be inferred from the intersection of the repairs. The
intersection of closed repairs (ICR) semantics (Bienvenu
2012) considers an answer valid if it can be inferred from the
intersection of the closures of the repairs. We illustrate these
semantics in our running example below.

Example 1. Consider a knowledge base (D,Σ) describing
orders in a restaurant, where D is the union of the following
four databases:

Dbase = {meat(beef), order(o)},
Dfood = {main(o, beef), side(o, cheese)},
Ddrinks = {drink(o, red), drink(o, beer)},
Ddesserts = {dessert(o, cake), dessert(o, pie)},

stating that beef is a meat dish and o is an order; furthermore,
order o has beef for the main course, cheese as side dish, red
wine and beer as drinks, and cake and pie as desserts.

The ontology Σ contains the following dependencies:

σ1 : main(X,Y),meat(Y)→ hasMeat(X),
σ2 : drink(X, red)→ hasWine(X),
σ3 : drink(X, beer)→ hasBeer(X),
σ4 : drink(X,Y)→ hasDrink(X),
σ5 : main(X,Y)→ ∃Z side(X,Z),

ν1 : hasBeer(X), hasWine(X) → ⊥,
ν2 : hasBeer(X), dessert(X,Y) → ⊥,
ν3 : hasBeer(X), side(X, cheese) → ⊥,
ν4 : hasWine(X), dessert(X, cake), dessert(X, pie) → ⊥.

The existential rules σ1–σ4 specify when an order includes
a meat dish, wine, beer, and a drink, respectively. Then, σ5

says that a main course always comes with a side dish.
The negative constraints ν1–ν3 say that beer cannot be

included in an order together with wine, or a dessert, or
cheese. Finally, the negative constraint ν4 says that an order
cannot include wine, cake, and pie all together.

The knowledge base is clearly inconsistent and admits four
repairs:

R1 = Dbase ∪Dfood ∪ {drink(o, red)} ∪ {dessert(o, pie)},
R2 = Dbase ∪Dfood ∪ {drink(o, red)} ∪ {dessert(o, cake)},
R3 = Dbase ∪ {main(o, beef)} ∪ {drink(o, beer)},
R4 = Dbase ∪Dfood ∪Ddesserts.

The query Q = ∃X,Y dessert(X,Y), asking whether some
dessert has been ordered, is not entailed under the AR seman-
tics, as repair R3 does not include any dessert. Thus, Q is
not entailed also under the IAR and ICR semantics.

The AR, IAR, and ICR semantics have been extensively
studied for both description logics (DLs) and existential rule
languages. In each semantics, all repairs are equally impor-
tant, and there is no way to prefer one over another. However,
in many applications it is natural and desirable to express
preferences, e.g., when one data source is more reliable than
another, or when information is time-stamped and more re-
cent facts are preferred over earlier ones. To cope with such
scenarios, different preference-based approaches have been
proposed—e.g., Bienvenu, Bourgaux, and Goasdoué (2014a)
defined variants of the AR and IAR semantics where classi-
cal repairs are replaced by various types of preferred repairs,

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

203

while Staworko, Chomicki, and Marcinkowski (2012) de-
fined variants of the AR semantics where different kinds of
preferred repairs are determined on the basis of a priority
relation between database facts.

However, preferences do not always hold in general but
may depend on several underlying factors. Most often
users have different preferences under different circum-
stances. For instance, this is the case for advanced per-
sonalized web applications, where customers who want to
make a purchase or reservation have different preferences
depending on a variety of factors. As an example, loca-
tion, time, and weather conditions may influence the place
one wants to visit. The importance of expressing condi-
tions under which preferences hold has been recognized in
several works (Ceylan, Lukasiewicz, and Peñaloza 2015;
Ceylan et al. 2017; Lukasiewicz, Martinez, and Simari 2013b;
Lukasiewicz et al. 2014; Stefanidis, Pitoura, and Vassiliadis
2011; Agrawal, Rantzau, and Terzi 2006), which addressed
the problem of querying consistent data in the presence of
“context-dependent” preferences. This feature comes par-
ticularly in handy in ontological settings, where part of the
knowledge is not known in advance, but it can well affect
which preferences should be applied (we will provide some
examples later on). In such settings, it is also particularly
relevant to express preferences on information that is not
directly available in the database, but it can be derived from
the data via knowledge provided by an ontology.

To deal with the scenarios discussed above, we propose a
framework for querying inconsistent knowledge bases under
user preferences. Inspired by the work of Brewka, Niemelä,
and Truszczynski (2003), where preference rules are used
to determine “optimal” answer sets of logic programs, we
enrich knowledge bases with preference rules, so as to nar-
row down the set of repairs to a set of preferred ones. We
then define preferred counterparts of the AR, IAR, and ICR
semantics by looking only at preferred repairs. By restricting
the set of repairs to be considered for query answering, more
information can be derived from the inconsistent knowledge
base. Of course, this should not be done in an arbitrary way,
but according to the users’ preferences. We illustrate the
basic idea of our approach in the following example.
Example 2. Consider again the scenario of Example 1. Sup-
pose we would like to express preferences among repairs
in such a way that the presence of some items in an order
determines what other items are preferred. In our framework,
one could specify this kind of preferences by means of the
following set Π of preference rules:

ρ1 : hasWine(X) � hasBeer(X)← hasMeat(X),
ρ2 : dessert(X, cake) � dessert(X, cherries)← main(X,Y),
ρ3 : dessert(X, pie) � dessert(X, cake)←

∃Y hasDrink(X), side(X,Y).

The first preference rule says that when an order includes
meat, wine is preferred over beer.

The second preference rule states that when an order in-
cludes a main course, cake is preferred over cherries.

The third preference rule says that when an order includes
a drink and some side dish, pie is preferred over cake.

We will see later that R1 and R4 (cf. Example 1) are the
repairs that best satisfy the above preference rules, and thus
they are preferred. Only preferred repairs are considered in
the definition of preferred inconsistency-tolerant semantics.
Thus, for instance, query Q of Example 1 is entailed under
our preferred AR, IAR, and ICR semantics.

In the previous example, it is worth noting that the applica-
bility of preference rules depends also on knowledge that is
not directly available in the database, but it is rather derived
from the database via the ontology—e.g., hasMeat in ρ1 and
hasDrink in ρ3. Furthermore, derived knowledge can be used
to express preferences, e.g., this is the case for ρ1, where the
preference is expressed over information derived from the
database via the ontology (namely, hasWine and hasBeer).

In this paper, we introduce a novel framework for querying
inconsistent knowledge bases under existential rules in the
presence of user preferences. We provide a thorough anal-
ysis of the data and combined complexity of the following
relevant problems: preferred repair checking, and preferred
AR, IAR, and ICR entailment. Our results consider a wide
range of existential rule languages.

The rest of the paper is organized as follows. Preliminaries
are reported in Section 2. Our framework is presented in
Section 3. A complexity analysis is reported in Section 4.
Related work is discussed in Section 5. Concluding remarks
and directions for future work are discussed in Section 6.

2 Preliminaries
In this section, we briefly recall some basics on existen-
tial rules from the context of Datalog± (Calı̀, Gottlob, and
Lukasiewicz 2012). We also recall inconsistency-tolerant
semantics for querying inconsistent knowledge bases.

General. We assume a set C of constants, a set N of labeled
nulls, and a set V of variables. A term t is a constant, null, or
variable. We also assume a set of predicates, each associated
with an arity, i.e., a non-negative integer. An atom has the
form p(t), where p is an n-ary predicate, and t is a tuple of
n terms. An atom containing only constants is also called
a fact. Conjunctions of atoms are often identified with the
sets of their atoms. An instance I is a (possibly infinite) set
of atoms p(t), where t is a tuple of constants and nulls. A
database D is a finite instance that contains only constants.
A homomorphism is a substitution h : C ∪N ∪V → C ∪
N ∪ V that is the identity on C and maps N to C ∪ N.
With a slight abuse of notation, homomorphisms are applied
also to (sets/conjunctions of) atoms. A conjunctive query
(CQ) Q has the form ∃Yϕ(X,Y), where X,Y are tuples of
variables, and ϕ(X,Y) is a conjunction of atoms over the
variables in X,Y without nulls. The answer to Q over an
instance I , denoted Q(I), is the set of all tuples t over C for
which there is a homomorphism h such that h(ϕ(X,Y)) ⊆ I
and h(X) = t. A Boolean CQ (BCQ) Q is a CQ ∃Yϕ(Y),
i.e., all variables are existentially quantified; Q is true over I ,
denoted I |= Q, ifQ(I) 6= ∅, i.e., there is a homomorphism h
with h(ϕ(Y)) ⊆ I .

Dependencies. A tuple-generating dependency (TGD) σ
is a first-order formula ∀X∀Yϕ(X,Y) → ∃Z p(X,Z),

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

204

where X, Y, and Z are pairwise disjoint tuples of vari-
ables, ϕ(X,Y) is a conjunction of atoms over X,Y, and
p(X,Z) is an atom, all without nulls; ϕ(X,Y) is the body
of σ, denoted body(σ), while p(X,Z) is the head of σ, de-
noted head(σ). For clarity, we consider single-atom-head
TGDs; however, our results extend to TGDs with a conjunc-
tion of atoms in the head. An instance I satisfies σ, written
I |= σ, if the following holds: whenever there exists a ho-
momorphism h such that h(ϕ(X,Y)) ⊆ I , then there exists
h′ ⊇ h|X, where h|X is the restriction of h on X, such that
h′(p(X,Z)) ∈ I . A negative constraint (NC) ν is a first-
order formula ∀Xϕ(X) → ⊥, with X a tuple of variables,
ϕ(X) is a conjunction of atoms over X, without nulls, called
the body of ν and denoted body(ν), and ⊥ denotes the truth
constant false . An instance I satisfies ν, written I |= ν, if
there is no homomorphism h such that h(ϕ(X)) ⊆ I .

Given a set Σ of TGDs and NCs, I satisfies Σ, written
I |= Σ, if I satisfies each TGD and NC of Σ. For brevity, we
omit the universal quantifiers in front of TGDs and NCs, and
use the comma for conjoining atoms. Given a class of TGDs
L, we denote by L⊥ the formalism obtained by combining
L with arbitrary NCs. Finite sets of TGDs and NCs are also
called programs, and TGDs are also called existential rules.
Knowledge Bases. A knowledge base is a pair (D,Σ),
where D is a database and Σ is a program. The subsets of a
program Σ containing its TGDs and NCs are ΣT and ΣNC ,
respectively. The set of models of KB = (D,Σ), denoted
mods(KB), is the set of instances {I | I ⊇ D∧I |= Σ}. We
say that KB is consistent if mods(KB) 6= ∅, otherwise KB
is inconsistent. The answer to a CQ Q relative to KB is the
set of tuples ans(Q,KB) =

⋂
{Q(I) | I ∈ mods(KB)}.

The answer to a BCQ Q is true, denoted KB |= Q, if
ans(Q,KB) 6= ∅. The decision version of the CQ answering
problem is: given a knowledge base KB , a CQ Q, and a
tuple of constants t, decide whether t ∈ ans(Q,KB). Since
CQ answering can be reduced in LOGSPACE to BCQ answer-
ing, we focus on BCQs. Following Vardi (1982), the data
complexity considers only the database as part of the input
(the rest is fixed), while the combined complexity considers
everything as part of the input.

The Datalog± languages that we consider to guarantee
decidability are among the most frequently analysed in the
literature, namely, linear (L) (Calı̀, Gottlob, and Lukasiewicz
2012), guarded (G) (Calı̀, Gottlob, and Kifer 2013), sticky
(S) (Calı̀, Gottlob, and Pieris 2012), and acyclic TGDs (A),
along with the “weak” (proper) generalizations weakly sticky
(WS) (Calı̀, Gottlob, and Pieris 2012) and weakly acyclic
TGDs (WA) (Fagin et al. 2005), as well as their “full” (i.e.,
existential-free) proper restrictions linear full (LF), guarded
full (GF), sticky full (SF), and acyclic full TGDs (AF), re-
spectively, and full TGDs (F) in general. We also recall the
following further inclusions: L⊂G and F⊂WA⊂WS.

We refer to (Lukasiewicz et al. 2015a) for an overview of
the complexity of BCQ entailment for the above languages.
Inconsistency-Tolerant Semantics for Query Answering.
We formally define the AR, IAR, and ICR semantics.

Let KB = (D,Σ) be a knowledge base. A repair of KB
is an inclusion-maximal subset R of D such that (R,Σ) is

consistent. We use Rep(KB) to denote the set of all repairs
of KB . The closure Cn(KB) of KB is the set of all facts
(thus containing constants only) entailed by D and the TGDs
of Σ. Let Q be a BCQ.

• KB entails Q under the ABox repair (AR) semantics if
(R,Σ) |= Q for every R ∈ Rep(KB).

• KB entails Q under the intersection of repairs (IAR)
semantics if (DI ,Σ) |= Q, where DI =

⋂
{R | R ∈

Rep(KB)}.
• KB entails Q under the intersection of closed repairs

(ICR) semantics if (DC ,Σ) |= Q, where DC =⋂
{Cn((R,Σ)) | R ∈ Rep(KB)}.

We refer to (Lukasiewicz et al. 2015a) and (Lukasiewicz,
Malizia, and Molinaro 2018) for an overview of the complex-
ity of AR- and IAR-/ICR-query answering, respectively, for
different existential rule languages and complexity measures.

3 Preference Rules
In this section, we introduce the syntax and semantics of
preference rules, which allow users to express preferences
among repairs. The aim is to use such rules to identify a set
of preferred repairs among all possible ones, and use only
the preferred repairs for AR, IAR, and ICR entailment.

Our framework consists of two main steps:

1. First, for each repair R and preference rule ρ, we define
when R satisfies ρ.

2. Then, preferred repairs are those that satisfy an inclusion-
maximal set of preference rules.

Before presenting formal definitions, we illustrate satisfac-
tion of a preference rule by a repair in the following example.

Example 3. Consider the knowledge base of Example 1 and
the preference rule ρ3 of Example 2. An instantiation of ρ3

for order o is the following preference rule:1

ρ′3 : dessert(o, pie) � dessert(o, cake)←
∃Y hasDrink(o), side(o, Y).

The preference rule consists of two parts: a preference
dessert(o, pie) � dessert(o, cake) stating that dessert(o, pie)
is preferred over dessert(o, cake), and a precondition
∃Y hasDrink(o), side(o, Y) stating when the preference
should be taken into account. Thus, the whole preference rule
can be read as follows: if the precondition holds in a repair
(in this case we also say that the preference rule is “applica-
ble” in the repair), then the preference has to be “fulfilled”
by the repair. When this implication holds, we say that the
repair satisfies the preference rule.

Specifically, for a repair R, different cases may occur:

1. (R,Σ) does not entail the precondition, and thus the pref-
erence rule is not applicable in R. This case occurs for
repair R4.

1We will formally define what instantiations are in the following,
using the notion of ground instances of preference rules.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

205

2. (R,Σ) entails the precondition, and thus the preference
rule is applicable inR. This case occurs for repairsR1,R2,
and R3. Then, we need to check whether the preference
dessert(o, pie) � dessert(o, cake) is fulfilled by R, and
different (sub)cases may occur:

(a) (R,Σ) does not entail dessert(o, pie), and (R,Σ) does
not entail dessert(o, cake). This case can be seen as
a scenario where the preference is irrelevant to R—
roughly speaking, none of the options hold. This case
occurs for repair R3.

(b) (R,Σ) entails dessert(o, pie). In this case, regardless of
whether (R,Σ) entails dessert(o, cake), the preference
is fulfilled. This case occurs for repair R1.

(c) (R,Σ) does not entail dessert(o, pie), and (R,Σ) en-
tails dessert(o, cake). In this case, the preference is
not fulfilled, or it is “violated”. This case occurs for
repair R2.

In Case 1, since ρ′3 is not applicable in R, the implication
expressed by the preference rule trivially holds, and we say
that R satisfies ρ′3.

In Case 2(b), ρ′3 is applicable in R and its preference is
fulfilled by R. In such a case, we say that R satisfies ρ′3.

In Case 2(c), ρ′3 is applicable in R and its preference is not
fulfilled by R. In this case, we say that R does not satisfy ρ′3.

Let us now discuss the case of irrelevance, namely
Case 2(a). Irrelevance can be treated in different ways. On
the one hand, it can be considered to be on a different level
w.r.t. (non-)satisfaction. On the other hand, one can argue
that not violating the preference is better than violating it.
Under this view, Case 2(a) should be treated like Case 2(b).
We adopt this latter view, and thus we say that R satisfies ρ′3
in Case 2(a). An analogous choice has been adopted also by
Brewka, Niemelä, and Truszczynski (2003). The rationale
behind this choice is that a repair where the preference is irrel-
evant should not be penalized. To provide a concrete simple
example, consider a knowledge base having three repairs
{dessert(o, pie)}, {dessert(o, cake)}, and {drink(o, red)},
with a preference rule dessert(o, pie) � dessert(o, cake)←,
where the precondition is empty and thus is always entailed.
While the first repair should be clearly preferred over the
second one, there is no reason to get rid of the third one.
Indeed, in our framework, the first and third repairs satisfy
the preference rule, and thus both are preferred ones.

In the following, we formally define the syntax and seman-
tics of our preference rules.
Syntax. The syntax of preference rules is as follows.

Definition 4. A preference rule ρ is an expression of the
form

p(X) � q(Y)← ∃Z ϕ(Z,W),

where X, Y, Z, and W are tuples of variables such that
X ∩ Z = Y ∩ Z = ∅, p(X) and q(Y) are atoms (whose
variables are exactly X and Y, respectively), and ϕ(Z,W)
is a (possibly empty) conjunction of atoms (whose variables
are exactly Z ∪W), all without nulls.

In the previous definition, the right-hand (resp., left-hand)
side of← is called the body (resp., head) of ρ and is denoted

as body(ρ) (resp., head(ρ)). Intuitively, the head expresses
a preference among two atoms, while the body expresses a
precondition for such a preference to be applied.

If every variable of ρ is existentially quantified, then ρ
is ground—thus, a ground preference rule can contain only
constants and existentially quantified variables, that is, it has
the form

p(a) � q(b)← ∃Z ϕ(Z, c),

with a, b, c tuples of constants and Z a tuple of variables.
A preference program is a finite set of preference rules.
The syntax (as well as the semantics) of our preference

rules is akin to that of the preference rules proposed by
Brewka, Niemelä, and Truszczynski (2003). However, as
opposed to the approach of Brewka, Niemelä, and Truszczyn-
ski (2003), we additionally allow existentially quantified
variables in the body of preference rules. This choice is moti-
vated by the presence of existential rules in the knowledge
base. We illustrate this aspect in the following example.

Example 5. Consider the preference rule ρ′3 of Example 3,
which is applicable in repairs R1–R3.

It is easy to see that (R1,Σ) and (R2,Σ) entail the body
of ρ′3, as both R1 and R2 contain a drink and a side dish for
order o.

Consider now repair R3. Notice that R3 does not contain
side(o, cheese) (which was in the database), because R3 con-
tains drink(o, beer) and the negative constraint ν3 states that
an order cannot include both beer and cheese. However, R3

contains main(o, beef), and the existential rule σ5 states that
every order including a main course must include a side dish
as well. Thus, (R3,Σ) entails that order o comes with some
“unknown” side dish (which has to be different from cheese,
because of ν3). Thus, ρ′3 is applicable in R3. Roughly speak-
ing, the existential quantification in σ5 (there exists a side
dish for an order including a main course) can be used to
satisfy the precondition of ρ′3 (if there exists a side dish for an
order including a drink, then pie is preferred over cake).

A prioritized knowledge base combines a knowledge base
with a preference program.

Definition 6. A prioritized knowledge base K is a triple
(D,Σ,Π), where D is a database, Σ is a program, and Π is a
preference program.

We say that K is consistent (resp., inconsistent) iff the
knowledge base (D,Σ) is consistent (resp., inconsistent).
The set of all repairs of K, denoted Rep(K), is the set of all
repairs of (D,Σ). An example of prioritized knowledge base
K = (D,Σ,Π) is the one presented in Examples 1–2.
Semantics. Consider a prioritized knowledge base K =
(D,Σ,Π). We use CK to denote the set of all constants ap-
pearing in K (that is, appearing in D, Σ, or Π). A ground
instance of a preference rule ρ ∈ Π is a ground preference
rule derived from ρ by replacing every non-existential vari-
able with a constant in CK, with multiple occurrences of the
same variable being replaced with the same constant. For in-
stance, for the preference rule p(X,Y) � q(X,Y)← b(X),
the occurrences of X in the body and in the head must be re-
placed with the same constant; likewise, the two occurrences
of Y in the head must be replaced with the same constant,

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

206

as the intended meaning of the preference rule is to prefer
a p-fact for a pair of values over a q-fact for the same pair
of values. We use grnd(ρ) to denote the set of all ground
instances of ρ, and define grnd(Π) =

⋃
ρ∈Π

grnd(ρ).

Notice that ground instances are derived by considering
only constants in CK, rather than C (or C ∪ N). Thus,
constants that are not in CK and nulls do not appear in ground
instances. As discussed in Example 3 (and formally defined
later), to check whether a repair satisfies a ground preference
rule, we need to check entailment of the body and of the
head atoms. Since atoms containing at least one constant not
in CK or containing at least one null are never entailed, we
consider the grounding w.r.t. CK as a meaningful one.

To define preferred repairs, we first need to define when a
repair satisfies a ground preference rule.

As discussed in Example 3, R satisfies ρ iff whenever R
(together with the ontology) entails the body of ρ, the head of
ρ is fulfilled by R. We formally define these notions below.

For a prioritized knowledge base K = (D,Σ,Π), by con-
sistent subset R of D we mean a set R ⊆ D such that (R,Σ)
is consistent.

Definition 7. Let K = (D,Σ,Π) be a prioritized knowledge
base, R a consistent subset of D, and ρ a ground preference
rule in grnd(Π) of the form p(a) � q(b)← ∃Z ϕ(Z, c).

We say that R fulfills p(a) � q(b) (w.r.t. K) iff

(R,Σ) 6|= q(b) or (R,Σ) |= p(a).

We say that R satisfies ρ (w.r.t. K) iff (R,Σ) |=
∃Z ϕ(Z, c) implies that R fullfils p(a) � q(b) w.r.t. K.

Notice that we do not transitively close preferences. In
contrast, we look for an explicit preference rule saying that
p(a) is preferred over q(b). A transitive closure would
require (iteratively) adding a ground preference rule A �
C ← body1, body2 for each pair of ground preference rules
A � B ← body1 and B � C ← body2, which can yield
an exponential blow-up in the number of preference rules.
Nonetheless, if needed, transitivity can still be stated by ex-
plicitly including a transitive closure in Π.

Example 8. Consider the prioritized knowledge base K =
(D,Σ,Π) of Examples 1–2 and the (ground) preference rule
ρ′3 of Example 3.

Repair R1 satisfies ρ′3, since

1. (R1,Σ) |= ∃Y hasDrink(o), side(o, Y), and
2. R1 fulfills dessert(o, pie) � dessert(o, cake), since

(R1,Σ) |= dessert(o, pie).

In contrast, repair R2 does not satisfy ρ′3, since

1. (R2,Σ) |= ∃Y hasDrink(o), side(o, Y), and
2. R2 does not fulfill dessert(o, pie) � dessert(o, cake),

as (R2,Σ) |= dessert(o, cake), and (R2,Σ) 6|=
dessert(o, pie).

For a repair R of a prioritized knowledge base K =
(D,Σ,Π), we use S(R,K) to denote the set of all prefer-
ence rules in grnd(Π) that are satisfied by R (w.r.t. K). We
define preferred repairs as follows.

Definition 9. Let K be a prioritized knowledge base. A
repair R of K is preferred iff there is no repair R′ of K s.t.
S(R,K) (S(R′,K). The set of all preferred repairs of K is
denoted as PRep(K).

Thus, preferred repairs satisfy an inclusion-maximal set of
ground preference rules. Other criteria are possible, such as
defining preferred repairs as those that satisfy a cardinality-
maximal set of preference rules, or satisfying at least k pref-
erence rules, for some k > 0. All such approaches are inter-
esting, in much the same way as cardinality and set-inclusion
maximality are both interesting when defining (standard)
repairs. We plan to investigate other criteria in future work.
Example 10. Consider the prioritized knowledge base K =
(D,Σ,Π) and repairs R1–R4 of Examples 1–2.

First of all, note that only ground preference rules in
grnd(Π) whose body contains order o can be differently
satisfied by R1–R4, as the body of any other ground prefer-
ence rule in grnd(Π) is never entailed by (Ri,Σ), for each
i ∈ {1, 2, 3, 4}. Thus, such preference rules are satisfied
by all repairs. Hence, we can focus on the following three
ground preference rules:

ρ′1 : hasWine(o) � hasBeer(o)← hasMeat(o),
ρ′2 : dessert(o, cake) � dessert(o, cherries)← main(o, beef),
ρ′3 : dessert(o, pie) � dessert(o, cake)←

∃Y hasDrink(o), side(o, Y).

Notice that ρ′1 is applicable in all repairs. Repairs R1 and
R2 satisfy ρ′1 because they both contain red wine;R4 satisfies
ρ′1 because it does not include any wine or beer; R3 does not
satisfy ρ′1 because it includes beer and no wine.

The preference rule ρ′2 is applicable in all repairs as well,
and it is satisfied by all of them, essentially because none of
them contain dessert(o, cherries).

Finally, as discussed in Example 3, R1, R3, and R4 satisfy
ρ′3, while R2 does not.

Thus, R1 and R4 satisfy all preference rules, while R2 and
R3 do not, and thus R1 and R4 are preferred.

Finally, we can easily generalize the inconsistency-tolerant
semantics to the case of prioritized knowledge bases, where
only the preferred repairs are considered for query answering.
Definition 11. Consider a prioritized knowledge base K =
(D,Σ,Π) and a BCQ Q.
• K entails Q under the Preferred ABox repair (PAR) se-

mantics if (R,Σ) |= Q for every R ∈ PRep(K).
• K entails Q under the intersection of preferred repairs

(IPAR) semantics if (DI ,Σ) |= Q, where DI =
⋂
{R |

R ∈ PRep(K)}.
• K entails Q under the intersection of closed preferred

repairs (ICPR) semantics if (DC ,Σ) |= Q, where DC =⋂
{Cn((R,Σ)) | R ∈ PRep(K)}.

Example 12. Consider again the prioritized knowledge base
K and the queryQ from Examples 1–2. The preferred repairs
of K are PRep(K) = {R1, R4} (cf. Example 10). Then, K
entails Q under the PAR, IPAR, and ICPR semantics, while
Q is not entailed under any of the standard inconsistency-
tolerant semantics.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

207

L⊥
PRC PAR IPAR ICPR

Data Combined Data Combined Data Combined Data Combined
L⊥, LF⊥, AF⊥

coNP

PSPACE

ΠP
2

PSPACE

ΠP
2

PSPACE

ΠP
2

PSPACE
SF⊥ EXP EXP EXP EXP

F⊥, GF⊥ EXP EXP EXP EXP
WA⊥ 2EXP 2EXP 2EXP 2EXP
S⊥ EXP EXP EXP EXP- 2EXP

A⊥ PNEXP PNEXP PNEXP PNEXP- EXPNEXP

G⊥, WS⊥ 2EXP 2EXP 2EXP 2EXP- 3EXP

Table 1: Data and combined complexity of preferred repair checking and preferred AR, IAR, and ICR entailment.

4 Complexity Results
In this section, we study the data and combined complexity
of the “preferred” variant of different classical problems in
the context of querying inconsistent knowledge bases.

The first problem asks whether a set of facts is a preferred
repair of a prioritized knowledge base.

Problem: PREFERRED REPAIR CHECKING
Input: A prioritized knowledge base K and a database D′.
Output: Is D′ a preferred repair of K?

The remaining family of problems asks whether a query
is entailed by a prioritized knowledge base under the PAR
(resp., IPAR, ICPR) semantics.

Problem: S-ENTAIL, with S ∈ {PAR, IPAR, ICPR}.
Input: A prioritized knowledge base K and a BCQ Q.
Output: Does K entail Q under the S semantics?

Our results are reported in Table 1. A single complexity
class in a cell refers to a completeness result, while two
classes C1-C2 refer to C1-hardness and C2-membership.

In the data complexity, the use of preference rules in-
curs an increase of complexity w.r.t. the standard setting
with no preferences. In fact, the data complexity goes from
membership in P to coNP-completeness for repair check-
ing, when moving from the standard setting to the preferred
one. For the AR and ICR semantics, the data complexity
goes from coNP-completeness of the standard setting to ΠP

2-
completeness of our preferred framework. For the IAR se-
mantics, the data complexity increases from membership in
AC0 or coNP-completeness (depending on the language) to
ΠP

2-completeness. In the combined complexity, moving from
the classical inconsistency-tolerant semantics to the preferred
ones does not yield an increase of complexity, except for
the languages S⊥, A⊥, G⊥, and WS⊥ under the ICPR se-
mantics. Indeed, in such cases we do not have completeness
results. Furthermore, except for S⊥, A⊥, G⊥, and WS⊥, each
language exhibits the same complexity under all semantics.

In the following, we useL⊥ to refer to any of the languages
considered in this paper and use L to refer to the language
without negative constraints.
Preferred Repair Checking. We start with the data com-
plexity of preferred repair checking. The following theorem
shows that preferred repair checking is coNP-complete in the
data complexity for all languages we consider. The hardness

result is proved via a reduction from 2+2-CNF UNSATISFI-
ABILITY.
Theorem 13. PREFERRED REPAIR CHECKING is coNP-
complete in the data complexity for all languages we con-
sider.

We now turn our attention to the combined complexity.
We first focus on the upper bounds and provide a generic
procedure that solves the complement of PREFERRED RE-
PAIR CHECKING using oracles for the following two key
problems.

The first problem is (classical) REPAIR CHECKING, that
is, given a knowledge base (D,Σ) and a database D′, decide
whether D′ is a repair of (D,Σ).

The second problem, named SATISFACTION, is defined as
follows: given a prioritized knowledge base K, a repair R of
K, and a ground preference rule ρ, decide whether R satisfies
ρ w.r.t. K.

The following proposition provides membership results
for these two problems in the combined complexity.
Proposition 14. For any language L⊥ considered here, if
BCQ entailment for L is in C in the combined complexity,
then REPAIR CHECKING (resp. SATISFACTION) for L⊥ is
• in C if C is deterministic and C ⊇ PSPACE,
• in PC if C = NEXP,
in the combined complexity.

The previous proposition is leveraged to derive member-
ship results for PREFERRED REPAIR CHECKING in the com-
bined complexity as follows.
Theorem 15. For any language L⊥ considered here, if RE-
PAIR CHECKING and SATISFACTION for L⊥ are in C in the
combined complexity, then PREFERRED REPAIR CHECKING
for L⊥ is in C in the combined complexity if C is determinis-
tic and C ⊇ PSPACE.

The upper bounds of PREFERRED REPAIR CHECK-
ING in the combined complexity of Table 1 follow from
Proposition 14, Theorem 15, and the complexity results
of (Lukasiewicz et al. 2015a) on the combined complexity of
BCQ entailment.

Regarding the lower bounds, we can reduce BCQ entail-
ment to the complement of PREFERRED REPAIR CHECKING,
obtaining tight lower bounds for all languages we consider
but A⊥, for which we will need a dedicated reduction.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

208

Theorem 16. For any language L⊥ considered here, BCQ
entailment for L is reducible in polynomial time to the com-
plement of PREFERRED REPAIR CHECKING for L⊥ in the
combined complexity.

Theorem 16 provides only a coNEXP-hardness for A⊥,
not matching the PNEXP upper bound. Below we show that
the problem is actually PNEXP-hard in the combined complex-
ity via a reduction from the PNEXP-complete extended tiling
problem defined in (Eiter, Lukasiewicz, and Predoiu 2016).
Theorem 17. PREFERRED REPAIR CHECKING for A⊥ is
PNEXP-hard in the combined complexity.
PAR Entailment. We now move to the PAR-ENTAIL prob-
lem, whose data complexity is show in the theorem below.
The hardness result is shown via a reduction from the problem
of deciding validity of a quantified Boolean formula.
Theorem 18. PAR-ENTAIL is ΠP

2-complete in the data com-
plexity for all languages we consider.

We now focus on the combined complexity. To show the
upper bounds, we provide a polynomial time nondeterminis-
tic procedure that exploits PREFERRED REPAIR CHECKING
as an oracle to solve the complement of PAR-ENTAIL.
Theorem 19. For any language L⊥ considered here, if PRE-
FERRED REPAIR CHECKING for L⊥ is in C in the combined
complexity, then PAR-ENTAIL for L⊥ is in coNPC in the
combined complexity.

Knowing that coC = C for any deterministic class C, and
NPC = C for any deterministic class C ⊇ PSPACE, we
can combine the above general theorem and the combined
complexity of PREFERRED REPAIR CHECKING to provide
upper bounds matching the lower bounds inherited from the
AR semantics (which is generalized by the PAR semantics).
IPAR Entailment. We now turn our attention to the IPAR-
ENTAIL problem, whose data complexity is as follows.
Theorem 20. IPAR-ENTAIL is ΠP

2-complete in the data
complexity for all languages we consider.

As for the combined complexity, with a similar approach
to the one used for the PAR semantics, the following theorem
provides upper bounds matching the lower bounds inherited
from the combined complexity of the standard IAR seman-
tics (Lukasiewicz, Malizia, and Molinaro 2018).
Theorem 21. For any language L⊥ considered here, if PRE-
FERRED REPAIR CHECKING for L⊥ is in C in the combined
complexity, then IPAR-ENTAIL for L⊥ is in coNPC in the
combined complexity.
ICPR Entailment. The last problem we analyze is ICPR-
ENTAIL, whose data complexity is as follows.
Theorem 22. ICPR-ENTAIL is ΠP

2-complete in the data
complexity for all languages we consider.

As for the combined complexity, we start with a theorem
providing upper bounds via a generic procedure. The proce-
dure exploits the fact that for a prioritized knowledge base
K = (D,Σ,Π), the database DC =

⋂
{Cn((R,Σ)) | R ∈

PRep(K)} is the set of all facts p(a) that are entailed by K
under the PAR semantics. So, after constructing DC by mak-
ing exponentially many entailment checks under the PAR

semantics, we can check whether (DC ,Σ) |= Q via a call to
an oracle for BCQ entailment (which is of lower complexity
w.r.t. PAR-ENTAIL).
Proposition 23. For any language L⊥ considered here, if
PAR-ENTAIL for L⊥ is in C in the combined complexity,
then ICPR-ENTAIL for L⊥ is in EXPC in the combined com-
plexity.

The above upper bound is not tight w.r.t. the lower bounds
inherited from classical ICR entailment. To obtain tight upper
bounds, we need to devise more refined procedures exploiting
some key properties of the underlying languages.

For the languages L⊥ and LF⊥, we exploit the fact that
under linear TGDs, checking whether a queryQ is entailed by
a knowledge base (D,Σ) requires to consider only |Q| facts
of the database. That is, (D,Σ) |= Q iff there is DQ ⊆ D
such that |DQ| ≤ |Q| and (DQ,Σ) |= Q (Gottlob et al. 2014,
Theorem 5). In the case of AF⊥, we rely on the fact that for
BCQ entailment, only a constant number (w.r.t. the database)
of facts needs to be kept in memory.
Theorem 24. ICPR-ENTAIL for L⊥, LF⊥, and AF⊥is in
PSPACE in the combined complexity.

The above upper bounds match the lower bounds inherited
from (Lukasiewicz, Malizia, and Molinaro 2018).

For F⊥,GF⊥, and SF⊥. we rely on the fact that the EXP
procedure for BCQ entailment of a query Q in a knowledge
base (D,Σ) runs in time O(k1 · ||D||k2), where ||D|| is the
size of D, and k1, k2 are terms that only depend on Σ and
the query Q.
Theorem 25. ICPR-ENTAIL for F⊥,GF⊥, and SF⊥ is in
EXP in the combined complexity.

The above upper bounds match the lower bounds inherited
from (Lukasiewicz, Malizia, and Molinaro 2018).

Regarding the class of weakly-acyclic TGDs, i.e., WA⊥, a
consequence of (Fagin et al. 2005, Proof of Theorem 3.9) is
that the running time of the double exponential time proce-
dure for BCQ entailment is again of the form O(k1 · ||D||k2),
where k1, k2 only depend on Σ and the queryQ. Hence, with
an argument similar to that of Theorem 25, we obtain the
following result.
Theorem 26. ICPR-ENTAIL for WA⊥ is in 2EXP in the
combined complexity.

The above upper bound matches the lower bound inherited
from (Lukasiewicz, Malizia, and Molinaro 2018).

Despite our efforts, for the remaining languages we were
not able to derive upper bounds tighter than those provided by
Proposition 23, which are EXPEXP for S⊥, yielding a 2EXP

upper bound; EXPNEXP for A⊥; EXP2EXP for G⊥ and WS⊥,
which leads to a 3EXP upper bound. We plan to close these
open problems in future work.

5 Related Work
The AR, IAR, and ICR semantics have been extensively in-
vestigated for DLs—see, e.g., (Lembo et al. 2010; Bienvenu
2012; Bienvenu and Rosati 2013; Bienvenu, Bourgaux, and
Goasdoué 2014b; Lembo et al. 2015; Bienvenu and Bourgaux
2016)—and under existential rules—see, e.g., (Lukasiewicz,

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

209

Martinez, and Simari 2012; Lukasiewicz, Martinez, and
Simari 2013a; Lukasiewicz et al. 2015a; Eiter, Lukasiewicz,
and Predoiu 2016; Lukasiewicz, Malizia, and Molinaro 2018;
Lukasiewicz, Malizia, and Vaicenavičius 2019).

For DLs, Bienvenu, Bourgaux, and Goasdoué (2014b)
defined variants of the AR and IAR semantics where classical
repairs are replaced by various types of preferred repairs.

One criterion they consider is to define preferred repairs
as cardinality-maximal ones. This approach is quite different
from ours. In fact, the preference criterion is fixed a pri-
ori between repairs (maximum cardinality), and there is no
preference expressed between individual facts (thus, all facts
are equally important). However, in our framework, if no
preference between facts is expressed, then all repairs are
preferred (including those that are not cardinality-maximal
but are only inclusion-maximal).

Another criterion is ≤w, where weights are assigned to
facts, and preferred repairs are those with the highest overall
weight. One natural way of mapping ≤w into our frame-
work is to introduce a preference rule a � b ← whenever
the weight of a is greater than the weight of b. However,
the preferred repairs returned by the two approaches are in
general different. As an example, consider the database D1

containing facts a, b, and c, whose weights are 3, 2, and
2, respectively. Suppose the following set of constraints is
defined: Σ1 = {a, b → ⊥, a, c → ⊥}. Then, the repairs
are {a} and {b, c}, whose weights are 3 and 4, respectively.
Thus, {b, c} is the only preferred repair w.r.t. ≤w. The pref-
erences induced by the aforementioned weights would be
expressed in our framework via preference rules a � b ←
and a � c←, which give {a} as the only preferred repair.

Bienvenu, Bourgaux, and Goasdoué (2014b) defined two
additional criteria based on priority levels, denoted as ⊆P
and≤P . Under such criteria, a prioritization is provided, that
is, the database is partitioned into priority levels P1, . . . Pn,
with facts in P1 considered the most reliable, and those in Pn
the least reliable. Then, either the set-inclusion or the cardi-
nality criterion is applied to each level. Such approaches are
somehow closer to ours. One natural way of expressing a pri-
oritization in our framework is to introduce a preference rule
a � b← for each pair of facts a and b such that a ∈ Pi and
b ∈ Pi+1 for some i. This approach expresses preferences be-
tween adjacent levels only. However, the two approaches do
not provide the same set of preferred repairs. As an example,
consider the database D2 = {a, b, c, d} and the constraints
Σ2 = {a, b → ⊥, a, c → ⊥, d, b → ⊥, d, c → ⊥}. The
repairs are R1 = {a, d} and R2 = {b, c}. Consider the pri-
oritization P1 = {a}, P2 = {b}, P3 = {c}, and P4 = {d}.
Then, R1 is the only preferred repair according to both ⊆P
and ≤P . The aforementioned translation of the prioritization
into preference rules yields a � b←, b � c←, and c � d←.
Then, in our framework both R1 and R2 are preferred.

An alternative translation is the one where preferences are
expressed between every pair of levels, not only adjacent ones.
More precisely, a prioritization might be translated into our
framework by introducing a preference rule a � b← for each
pair of facts a and b such that a ∈ Pi and b ∈ Pj with i < j.
Also in this case the preferred repairs do not coincide. As
an example, consider D3 = {a, b, c, d, e} and Σ3 = {c, d→

⊥, e, d → ⊥}. There are two repairs R1 = {a, b, c, e} and
R2 = {a, b, d}. Consider now the prioritization P1 = {a},
P2 = {b, c}, P3 = {d}, and P4 = {e}. Repair R1 is the
only preferred one w.r.t. both ⊆P and ≤P . By translating the
prioritization into preference rules we get Π3 = {a � b←,
a � c←, a � d←, a � e←, b � d←, b � e←, c � d←,
c � e ←, d � e ←}. It can be easily verified that in our
framework both R1 and R2 are preferred repairs.

Even if we restrict our framework to preference rules with
empty body, none of the criteria discussed above allow us to
express arbitrary preferences between any pair of facts, as we
do, such as cyclic preference relations or preferences between
facts that are not in the database but are entailed from the
database via the ontology. Also, we allow preconditions to be
stated. Another difference is that Bienvenu, Bourgaux, and
Goasdoué (2014b) consider DLs (in particular, they focus
on DL-LiteR), while we consider existential rule languages.
Finally, besides the AR and IAR semantics, we additionally
consider the ICR semantics.

Staworko, Chomicki, and Marcinkowski (2012) introduced
a framework where the AR semantics (a.k.a. consistent query
answering) is generalized to take into account a priority rela-
tion � expressing preferences among facts in the database.
Such preferences are then used to define three notions of
preferred repairs: global-, Pareto-, and completion-optimal
repairs. Different computational problems of this frame-
work have been recently investigated. In particular, for func-
tional dependencies, Fagin, Kimelfeld, and Kolaitis (2015)
showed dichotomies for the preferred repair checking prob-
lem, Livshits and Kimelfeld (2017) addressed the problem of
counting and enumerating preferred repairs, while Kimelfeld,
Livshits, and Peterfreund (2017) studied the problem of de-
ciding whether there exists exactly one preferred repair.

Clearly, preferences among facts can be expressed in our
framework via preference rules with empty body. In the pres-
ence of preferences of this form, one interesting question is
whether the two frameworks give the same preferred repairs.
In general, this is not the case. As an example, consider
the database D = {a, b, c}, the constraints a, b → ⊥ and
a, c → ⊥, and the priority a � b. The only repairs are {a}
and {b, c}, and both are global-, Pareto-, and completion-
optimal. However, considering the preference rule a � b←
in our framework, {a} is the only preferred repair.

Staworko, Chomicki, and Marcinkowski (2012) defined
desirable properties for families of preferred repairs, namely
Non-emptiness (i.e., the set of preferred repairs is always
non-empty), Monotonicity (i.e., adding preferences can only
narrow the set of preferred repairs), Non-discrimination (i.e.,
the set of preferred repairs coincides with the set of repairs
when no preference is expressed), Categoricity (i.e., when the
preference relation is total there is a single preferred repair),
and Conservativeness (i.e., preferred repairs are a subset of
all repairs). Different preference-based frameworks in the
literature satisfy different subsets of such properties—we
refer to (Staworko, Chomicki, and Marcinkowski 2012) for a
thorough discussion. In our framework, it is straightforward
to see that Non-emptiness, Non-discrimination, and Conser-
vativeness are satisfied. On the other hand, Monotonicity and
Categoricity are not satisfied. As an example, consider the

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

210

knowledge base (D2,Σ2), where D2 and Σ2 are the ones
previously introduced. Recall that the repairs are {a, d} and
{b, c}. Consider now the preference rule a � b ←. In our
framework, the only preferred repair is {a, d}. By introduc-
ing the additional preference rule c � d ←, both repairs
are preferred, thus violating monotonicity. Satisfaction of
Monotonicity highly depends on how preferences are used to
determine preferred repairs. In the example above, a � b←
is satisfied by the first repair but not by the second one, which
gives a reason to prefer the former over the latter in our frame-
work. When there is no reason (i.e., no other preference) to
prefer the second repair over the first one, the first repair is
the only preferred one. However, the addition of c � d ←
provides a reason to prefer the second repair over the first one,
which makes them incomparable in our framework, and both
end up being preferred. Thus, in our approach, Monotonicity
is not as meaningful/relevant as in (Staworko, Chomicki, and
Marcinkowski 2012), where preferences are interpreted in a
different way. Categoricity also depends on how preferences
between facts are used to determine preferred repairs. Con-
sider the knowledge base (D3,Σ3) and the set of preference
rules Π3 previously introduced. By adding b � c ← to Π3,
the preference relation is total. However, both repairs of
(D3,Σ3) are preferred.

Staworko, Chomicki, and Marcinkowski (2012) focus on
acyclic preference relations where a preference can only in-
volve two facts violating the same integrity constraint. In
contrast, we do not impose any restriction on preferences,
which can thus be cyclic and involve facts that do not violate
any integrity constraint or violating different integrity con-
straints. Also, our preference rules can express preferences
between facts derived via the ontology. Furthermore, they
deal with denial constraints, while we consider existential
rules and negative constraints. Also, we allow users to ex-
press preconditions for preferences to hold, which cannot be
done in their framework. Finally, besides the AR semantics,
we additionally consider the IAR and ICR semantics.

Another framework related to ours are active integrity con-
straints (AICs) (Caroprese, Greco, and Zumpano 2009). An
AIC specifies an integrity constraint along with the updates
that are allowed to restore consistency when the constraint
is violated. Founded repairs are those repairs obtained by
applying only allowed updates. Consistent query answer-
ing is then (re)defined by looking only at founded repairs.
The framework thus expresses a sort of hard preference by
partitioning conflicting facts into allowed and non-allowed
ones—to the point that in some cases there does not exist any
founded repair (while in our framework the set of preferred
repairs is always non-empty). Our framework allows us to
express preferences in a different way, as we can express pref-
erences among facts that do not violate integrity constraints
or violating different integrity constraints, and such prefer-
ences do not forbid any fact a priori. Also, AICs can express
denial constraints, while we consider ontologies consisting
of existential rules and negative constraints.

Querying consistent knowledge bases in the presence of
user preferences has been investigated for both DLs (Ceylan
et al. 2017; Ceylan, Lukasiewicz, and Peñaloza 2015) and
existential rule languages (Fazzinga et al. 2018; Lukasiewicz

et al. 2015b; Lukasiewicz et al. 2014; Lukasiewicz, Martinez,
and Simari 2013b; Lukasiewicz et al. 2013). The problem
has been investigated also for relational data by Stefanidis,
Pitoura, and Vassiliadis (2011). Specifically, preferences
are annotated with context states specifying under which
conditions a preference holds. Each query is also associated
with a set of context states. The problem is then to select
the best matching tuples taking into account preferences, as
well as the context states of both the data and the query. One
important aspect that our work and the one by Stefanidis,
Pitoura, and Vassiliadis (2011) share is the capability of
expressing conditions under which preferences hold. The
main difference between this paper and the aforementioned
ones is that we deal with inconsistency.

More specifically, they lift preferences to query answers
for different purposes, e.g., to rank and compute top-k query
answers. In our case, query answers are not ranked. Prefer-
ences are rather lifted to repairs in order to identify preferred
ones.

To the best of our knowledge, this is the first paper address-
ing the problem of querying inconsistent knowledge bases
under existential rules in the presence of user preferences.

We conclude by mentioning that there has been work in
logic programming with a similar spirit, in that logic pro-
grams are combined with preferences so as to determine a set
of preferred answer sets—e.g., see (Sakama and Inoue 2000;
Brewka, Niemelä, and Truszczynski 2003; Greco, Trubitsyna,
and Zumpano 2007)— while we use preferences to determine
a set of preferred repairs. Despite such a difference in the
underlying settings, at a higher level of abstraction both sce-
narios tackle the problem of expressing preferences among
sets of facts (answer sets or repairs).

6 Conclusion
We have proposed a framework for querying inconsistent
knowledge bases under existential rules in the presence of
user preferences. We have analyzed the data and combined
complexity of different relevant problems for a wide range
of existential rule languages.

An interesting direction for future work is to extend our
analysis to the fixed-program combined complexity, that
is, when the ontology is assumed to be fixed, and to the
bounded-arity combined complexity, that is, when it is as-
sumed that the maximum arity of the predicates is bounded
by an integer constant. Another direction for future work is
to apply preferences rules to different kinds of repairs, e.g.,
cardinality-maximal ones (recall that we relied on the stan-
dard inclusion-maximal notion of repair). Also, it would be
interesting to apply the framework of Staworko, Chomicki,
and Marcinkowski (2012) to existential rule languages.

Acknowledgments
We thank the anonymous referees for many constructive com-
ments and suggestions that helped improve the paper.

References
Agrawal, R.; Rantzau, R.; and Terzi, E. 2006. Context-
sensitive ranking. In Proc. SIGMOD, 383–394.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

211

Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Consis-
tent query answers in inconsistent databases. In Proc. PODS,
68–79.
Bienvenu, M., and Bourgaux, C. 2016. Inconsistency-tolerant
querying of description logic knowledge bases. In Reasoning
Web, 156–202.
Bienvenu, M., and Rosati, R. 2013. Tractable approximations
of consistent query answering for robust ontology-based data
access. In Proc. IJCAI, 775–781.
Bienvenu, M.; Bourgaux, C.; and Goasdoué, F. 2014a. Query-
ing inconsistent description logic knowledge bases under
preferred repair semantics. In Proc. AAAI, 996–1002.
Bienvenu, M.; Bourgaux, C.; and Goasdoué, F. 2014b. Query-
ing inconsistent description logic knowledge bases under
preferred repair semantics. In Proc. AAAI, 996–1002.
Bienvenu, M. 2012. On the complexity of consistent query
answering in the presence of simple ontologies. In Proc.
AAAI, 705–711.
Brewka, G.; Niemelä, I.; and Truszczynski, M. 2003. Answer
set optimization. In Proc. IJCAI, 867–872.
Calı̀, A.; Gottlob, G.; and Kifer, M. 2013. Taming the
infinite chase: Query answering under expressive relational
constraints. J. Artif. Intell. Res. 48:115–174.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general
Datalog-based framework for tractable query answering over
ontologies. J. Web Sem. 14:57–83.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2012. Towards more ex-
pressive ontology languages: The query answering problem.
Artif. Intell. 193:87–128.
Caroprese, L.; Greco, S.; and Zumpano, E. 2009. Active
integrity constraints for database consistency maintenance.
IEEE Trans. Knowl. Data Eng. 21(7):1042–1058.
Ceylan, İ. İ.; Lukasiewicz, T.; Peñaloza, R.; and Tifrea-
Marciuska, O. 2017. Query answering in ontologies under
preference rankings. In Proc. IJCAI, 943–949.
Ceylan, İ. İ.; Lukasiewicz, T.; and Peñaloza, R. 2015. An-
swering EL queries in the presence of preferences. In Proc.
DL.
Eiter, T.; Lukasiewicz, T.; and Predoiu, L. 2016. Generalized
consistent query answering under existential rules. In Proc.
KR, 359–368.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theor. Com-
put. Sci. 336(1):89–124.
Fagin, R.; Kimelfeld, B.; and Kolaitis, P. G. 2015. Di-
chotomies in the complexity of preferred repairs. In Proc.
PODS, 3–15.
Fazzinga, B.; Lukasiewicz, T.; Martinez, M. V.; Simari, G. I.;
and Tifrea-Marciuska, O. 2018. Ontological query answering
under many-valued group preferences in datalog+/-. Int. J.
Approx. Reason. 93:354–371.
Gottlob, G.; Kikot, S.; Kontchakov, R.; Podolskii, V.;
Schwentick, T.; and Zakharyaschev, M. 2014. The price
of query rewriting in ontology-based data access. Artificial
Intelligence 213:42 – 59.

Greco, S.; Trubitsyna, I.; and Zumpano, E. 2007. On the
semantics of logic programs with preferences. J. Artif. Intell.
Res. 30:501–523.
Kimelfeld, B.; Livshits, E.; and Peterfreund, L. 2017. De-
tecting ambiguity in prioritized database repairing. In Proc.
ICDT, 17:1–17:20.
Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo,
D. F. 2010. Inconsistency-tolerant semantics for description
logics. In Proc. RR, 103–117.
Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo,
D. F. 2015. Inconsistency-tolerant query answering in
ontology-based data access. J. Web Sem. 33:3–29.
Livshits, E., and Kimelfeld, B. 2017. Counting and enumer-
ating (preferred) database repairs. In Proc. PODS, 289–301.
Lukasiewicz, T.; Martinez, M. V.; Simari, G. I.; and Tifrea-
Marciuska, O. 2013. Group preferences for query answering
in datalog+/- ontologies. In Proc. SUM, 360–373.
Lukasiewicz, T.; Martinez, M. V.; Simari, G. I.; and Tifrea-
Marciuska, O. 2014. Ontology-based query answering with
group preferences. ACM Trans. Internet Techn. 14(4):25:1–
25:24.
Lukasiewicz, T.; Martinez, M. V.; Pieris, A.; and Simari, G. I.
2015a. From classical to consistent query answering under
existential rules. In Proc. AAAI, 1546–1552.
Lukasiewicz, T.; Martinez, M. V.; Simari, G. I.; and Tifrea-
Marciuska, O. 2015b. Preference-based query answering
in probabilistic datalog+/- ontologies. J. Data Semantics
4(2):81–101.
Lukasiewicz, T.; Malizia, E.; and Molinaro, C. 2018. Com-
plexity of approximate query answering under inconsistency
in Datalog+/–. In Proc. IJCAI, 1921–1927.
Lukasiewicz, T.; Malizia, E.; and Vaicenavičius, A. 2019.
Complexity of inconsistency-tolerant query answering in
Datalog+/– under cardinality-based repairs. In Proc. AAAI,
2962–2969.
Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2012.
Inconsistency-tolerant query rewriting for linear Datalog+/–.
In Proc. Datalog 2.0, 123–134.
Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2013a.
Complexity of inconsistency-tolerant query answering in
Datalog+/–. In Proc. OTM, 488–500.
Lukasiewicz, T.; Martinez, M. V.; and Simari, G. I. 2013b.
Preference-based query answering in datalog+/- ontologies.
In Proc. IJCAI, 1017–1023.
Sakama, C., and Inoue, K. 2000. Prioritized logic program-
ming and its application to commonsense reasoning. Artif.
Intell. 123(1-2):185–222.
Staworko, S.; Chomicki, J.; and Marcinkowski, J. 2012.
Prioritized repairing and consistent query answering in rela-
tional databases. Ann. Math. Artif. Intell. 64(2-3):209–246.
Stefanidis, K.; Pitoura, E.; and Vassiliadis, P. 2011. Manag-
ing contextual preferences. Inf. Syst. 36(8):1158–1180.
Vardi, M. Y. 1982. The complexity of relational query
languages (extended abstract). In Proc. STOC, 137–146.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

212

	Introduction
	Preliminaries
	Preference Rules
	Complexity Results
	Related Work
	Conclusion

