
Spatial Reasoning about String Loops and Holes in Temporal ASP

Pedro Cabalar1 , Paulo E. Santos2,3
1University of A Coruña, Spain

2Flinders University, Adelaide, Australia
3FEI, São Paulo, Brazil

cabalar@udc.es, paulo.santos@flinders.edu.au

Abstract
This paper introduces a new formalism for the automated so-
lution of spatial scenarios involving strings and holed objects.
In particular, we revisit a previous formalisation that allows
string loops to be treated as holes, but make a substantial
modification by removing a previous limitation that prevented
a string to cross its own loops. The formalisation introduced
in the present paper relies on string segments as basic en-
tities and achieves a greater degree of elaboration tolerance
by using inertia to describe those parts of the physical sce-
nario that are unaffected by a given action. As a representa-
tion language, we have used Temporal Answer Set Program-
ming since it provides a simple and natural way to deal with
time and inertia while, at the same time, it is accompanied by
the automated tool telingo that allows a systematic testing
of the effects of any sequence of actions. As an illustrative
example, we have studied the African Ring puzzle, a problem
involving loops crossed by a unique string, and provided the
first formalisation of its solution, to the best of our knowl-
edge.

1 Introduction
One of the long-term goals of Artificial Intelligence (AI) is
to endow computers with commonsense reasoning, a topic
that dates back to the very beginning (McCarthy, 1959) of
the area of Knowledge Representation (KR). A device with
common sense should be capable of making similar assump-
tions as those made by humans in ordinary situations of their
daily life. These assumptions involve common knowledge
about their physical environment, the behaviour of other
agents, the existing interactions and their possible effects,
all of them, crucial capabilities for the development of intel-
ligent robotic systems. As a challenging example, think for
instance how humans can easily manipulate flexible objects
like strings and make them interact with holed objects. Peo-
ple soon learn to deal with ordinary situations like putting
a belt on a pair of trousers or tying a shoelace, but may
also be trained to handle more complex scenarios involv-
ing rope handling as in sailing, suturing, knitting or climb-
ing. If we want to emulate this behaviour on a computer or a
robot, a first question we must answer is how do we formally
represent strings? It seems clear that persons rarely handle
accurate measurements or three-dimensional curves but, in-
stead, they normally reason, learn and talk about strings us-
ing qualitative terms. One possibility explored by some au-

thors has been to use Knot Theory (Menasco, 2005; Kauff-
man, 2005) in robotics as, for instance, in the robotic sys-
tems for autonomous knot tying tasks (Sanchez et al., 2018).
Actions on flexible objects in this context were defined as an
extension of the Reidemeister (1983) moves. This represen-
tation is suitable for the identification of string states from a
computer vision system; however, it falls short in the context
of problem solving, which is the main purpose of the present
work. In fact, in a natural language description of a string-
manipulation problem we normally find concepts closer to
the possible actions and constraints imposed by the prob-
lem, rather than fine-grained, planar topological information
as the one used in knot theory.

In a series of papers, (Cabalar and Santos, 2006, 2011,
2016) plus (Santos and Cabalar, 2008, 2013b, 2016) an
incremental formalisation was developed of scenarios in-
volving strings and holed objects. Following a bottom-up
methodology well-established in KR, we have considered
different families of puzzles involving strings, starting from
simpler cases and gradually increasing the complexity of the
operations required for solving the puzzle. In a first stage,
Cabalar and Santos (2006) formalised a family of puzzles
that can be solved without forming loops in the strings.
Later on, this restriction was removed in (Cabalar and San-
tos, 2011; Santos and Cabalar, 2016) so that, adding new
actions for picking and pulling from string segments, loops
could be dynamically created and destroyed. More impor-
tantly, string loops also behaved as holes and could be, in
their turn, crossed by other strings. However, an important
limitation of this last formalisation was the impossibility of
handling strings that crossed their own loops. This impossi-
bility did not come from the string state representation itself,
which actually allowed such feature, but was mostly due to
the extreme difficulty of describing the effects of actions un-
der that premise. The state of a string was represented as a
list of crossings (representing the various sections in which
the string crossed a hole) and each loop in the string was
identified by a pair of absolute positions in that list. This
representation was compact, but actions on the strings could
cause radical changes in the lists and their associated loops
that, additionally, required renumbering. This meant a lack
of elaboration tolerance since, very frequently an action af-
fecting a local part of the puzzle might causes a substan-
tial change in the representation of other unaffected parts of

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

182



the puzzle. As a result, when a string crossed its own loops,
there simply was no obvious way to describe the effects of
an action in terms of formal changes in the list and the loops.
The observed results on the list just showed an (apparently)
unpredictable behaviour.

In the present paper, we overcome this difficulty and ex-
tend our framework to formalise the effect of actions that
may deal with strings crossing their own loops. To this aim,
we resort to our logical representation of string states in-
troduced in (Cabalar and Santos, 2006) where the string is
decomposed into segments treated as independent individu-
als that can be created and destroyed, forming or removing
loops as a consequence. An important advantage of this rep-
resentation is that segments that are not affected by the appli-
cation of an action can be kept unchanged by application of
the inertia default rule. To cope with the non-monotonicity
of inertia, the original approach in (Cabalar and Santos,
2006) resorted to First-Order Equilibrium Logic (Pearce and
Valverde, 2004) a complete logical characterisation of An-
swer Set Programming (ASP) (Gelfond and Lifschitz, 1988;
Marek and Truszczyński, 1999; Niemelä, 1999), while the
representation of time was based on Situation Calculus (Mc-
Carthy and Hayes, 1969). Our current formalisation also re-
lies on ASP, but uses instead the linear-temporal extension
of equilibrium logic introduced in (Aguado et al., 2013) that
gave birth to the Temporal ASP framework (Cabalar et al.,
2018) and its associated solver telingo (Cabalar et al.,
2019). The advantage of this choice is that we can also test
the effects of our segment-based formalisation in the com-
puter, something that was only done for the list-based repre-
sentation until now.

The main contribution of the paper is the formal charac-
terisation of the effects of picking and pulling string seg-
ments through holes, regardless of whether the associated
loops were created or destroyed on the same string or on
different ones. This solution is general enough to be applied
to various situations involving actions over string segments
and holes. The consideration of actions related to winding
(and unwinding) knots and the deployment of these ideas
in real application domains is one of our major future work
goals. This includes tasks such as autonomous needle steer-
ing (aiming at autonomous or semi-autonomous surgery) or
the manipulation of (and reasoning about) real-world flexi-
ble objects by a collaborative robot in an industrial setting.
However, applications require first a solid formalisation, and
for that purpose, studying puzzles that contain enough com-
plexity (as proposed by John McCarthy in the beginnings of
KR (Morgenstern and McIlraith, 2011)) helps us to concen-
trate on the relevant aspects of the problem at hand. As a
proof of concept, and for a better understanding of the tech-
nical material introduced in this work, we provide a formal-
isation of the solution for the so-called African Ring puzzle
(Figure 3(a)) that involves loop manipulation on a unique
string. To the best of our knowledge this is the first formal
account of this domain.

2 Background
This paper uses some of the definitions introduced in our
previous work (Cabalar and Santos, 2011; Santos and Ca-

balar, 2016; Cabalar and Santos, 2016): a hole H can be
abstracted as a delimited surface with two faces, arbitrarily
named H+ and H−, whereas a string S can be thought as
an arbitrarily long linear structure with two tips, the nega-
tive S− or start, and the positive S+ or end. For any hole
face F , we write opp(F ) to stand for its opposite face, that
is, opp(H+) = H− and opp(H−) = H+. In a given state,
the string may be crossing a sequence of holes, from the
start to the end of the string, that can be collected in a list,
chain(S). Each hole crossing in this list is represented by
the exit hole face of the crossing. Although the state of the
strings can be fully captured by these chain-lists, it will be
usually convenient to depict their configuration using sim-
plified diagrams. As an illustration, Figure 1(a) shows the
initial state of the Fisherman’s Folly puzzle (see (Cabalar
and Santos, 2011)), whose goal is to remove a ring r from an
entanglement of objects. Each holed object is represented as
an ellipse whose “visible” face is the positive one. The puz-
zle has four holed objects, b1, b2, ph and r. Strings are frag-
mented into their segments (portions delimited by crossings
and tips) which, in their turn, are represented as thick arrows.
The puzzle has two strings, s and p, the former consists of
four segments, from s : 0 to s : 3, and the latter has only two,
p : 0 and p : 1. Finally, rectangles represent regular, non-
holed objects (in this case, base, d1 and d2) usually linked
to some string tip. The puzzle states are represented by the
chains chain(s) = [b1+, ph+, b2+] and chain(p) = [r+]
together with the links among objects. In their initial for-

b1 b2

ph

d2d1

base

r

s:0 s:1 s:2 s:3

p:1

p:0

(a) String s crosses a holed object ph.

b1 b2

d2d1

base

r

s:0 s:1 s:2 s:3

p:1

p:0p:2

(b) String s crosses a loop on p.

Figure 1: Variants of the Fisherman’s Folly puzzle.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

183



malization, Cabalar and Santos (2011) exclusively studied
the effects of action pass(X,F ), that is, passing an object
X (linked to some string tip) through a given hole towards
some of its faces F . An important simplification was that
passing an object also pulled any linked string without rep-
resenting intermediate states, something that prevented the
formation of string loops. Under this assumption, Cabalar
and Santos (2011) built a blind search Prolog planner that
described the effects of pass actions in terms of transforma-
tions on the chain-lists. Later on, Cabalar and Santos (2016)
extended this setting to incorporate (a relevant type of) string
loops. A string loop is defined as a subsequence of string
segments started by a crossing towards a face F and end-
ing by a crossing towards opp(F ). In other words, the loop
starts crossing a hole H in some direction and ends crossing
H back in the opposite direction.

Figure 1(b) shows a variant of the Fisherman’s Folly puz-
zle where the holed object ph has been actually replaced
by a string loop on p. In this variant, the chain for p be-
comes chain(p) = [r+, r−] and the loop is formed by its
second segment p : 1. The complexity introduced by string
loops is that, as we can see in the figure, they also behave
as holes. For instance, if we call the loop formed by p : 1
by the symbol l, then the string segment that lies in be-
tween b1 and b2 (in Figure 1(b)) can be represented1 as
chain(s) = [b1+, l+, b2+]. As it can be imagined, string
loops are difficult to formalise, since they can be dynam-
ically created or removed, depending on the actions per-
formed on the string. Moreover, as accounted in (Santos and
Cabalar, 2016), they also form a hierarchy: a subloop may
occur as a subsequence of a larger loop. When a subloop is
destroyed, some of the interactions with other strings may
affect its parent loop.

In (Cabalar and Santos, 2016), loops were named accord-
ing to their relative position in the chain. For instance, in a
chain of the form chain(s) = [F1, F2, r

+, F4, F5, r
−, F7],

the loop formed on r was denoted as l(s, [3, 6]) meaning
that we take the sublist of chain(s) comprising from the
third to the sixth element, that is [r+, F4, F5, r

−]. The ad-
vantage of this notation is that each loop can be uniquely
identified by exclusively inspecting the set of chain lists in a
state. Using this representation, Cabalar and Santos (2016)
developed an extension of the Prolog prototype that was ca-
pable of describing the effects of two basic kinds of action
involving loops, pick and pull (we will explain and extend
them later). As shown in (Santos and Cabalar, 2016), this
sufficed to capture the sequence of transitions in the solution
of the Easy-does-it puzzle (Figure 2), whose goal is also to
extract a ring from an entanglement of strings and rigid ob-
jects. In spite of this success, this representation also has an
important drawback. As the loop names are relative to the
current set of chains, the description of the effects of a given
action becomes extremely cumbersome, since not only can
loops be destroyed or created but also, and most frequently,
their names must be recomputed in terms of the whole set
of resulting chains. This makes the Prolog code difficult to
follow, compromising correctness. Moreover, the code was

1We use the right thumb rule to fix the positive side of a loop.

b1

b2

r1

r2

r3

s2

s1

p

Figure 2: A state from the Easy-does-it puzzle.

built under the hard assumption that a string s could only
cross loops on different strings, but not loops formed by s
itself. This sufficed for solving the Easy-does-it puzzle, but
became an assumption difficult to remove, since the changes
in the loop numbering are always global with respect to the
whole chain list, rather than local, affecting the part of the
string altered by a given action.

As we can see, the chain-based representation of loops
suffered from an important lack of elaboration tolerance that
prevented its application to scenarios where a single string
may cross its own loops. One of such scenarios is the African
Ring (or African Ball) puzzle, shown in Figure 3(a). This
puzzle actually dates back to the 16th century, in its ver-
sion known as the Solomon’s seal in the literature (Figure
3(b)) (Pacioli, 2009; Rusca, 1743; dos Santos Hirth, 2015).
The African Ring is composed of an entanglement of a sin-
gle string fixed at the two ends of a rigid cylinder (the post)
with a perforating hole in the middle, through which the
string passes twice. The goal of this puzzle is to slide a
ring (by means on non-destructive actions) that is initially
hanging on one side of the string (see Figure 3(c)) to end
up hanging instead on the other side of it, reaching a sym-
metric configuration (see Figure 3(d)). The main difficulty
arises from the impossibility of passing the ring through the
post hole. Equivalent configurations, like the Solomon’s seal
(see Figure 3(b)), may use a plate rather than a cylinder or
include two hanging objects that are initially separated but
must end up hanging together in the same side of the string.

3 Action Domains in Temporal ASP

Our scenarios will be formally represented in a temporal ex-
tension of Answer Set Programming (ASP) (Gelfond and
Lifschitz, 1988). In particular, we will use the input lan-
guage of the temporal ASP tool telingo (Cabalar et al.,
2019), a variant of the popular ASP solver clingo (Gebser
et al., 2016) that incorporates operators and constructs for
reasoning about finite traces in transition systems. Due to
space limitations, we assume some familiarity with ASP and
will just illustrate the temporal features of telingo through
the examples. Our representation uses two main dynamic
predicates: h(F, V ), meaning that fluent F holds value V ;
and o(A) meaning that action A has occurred. We also use
c(F, V ) to mean that fluent F was caused to get value V .

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

184



(a) African Ring (b) Solomon’s
Seal.

(c) Initial state (d) Goal state

Figure 3: African Ring Puzzle

1 #program dynamic.
2 c(gun,loaded) :-
3 o(load),’h(gun,unloaded).
4 c(turkey,dead) :-
5 o(shoot),’h(gun,loaded).
6 c(gun,unloaded):-
7 o(shoot),’h(gun,loaded).
8 h(F,V) :- c(F,V).
9 c(F) :- c(F,V).

10 h(F,V) :- ’h(F,V), not c(F).
11

12 #program initial.
13 h(gun,unloaded).
14 h(turkey,alive).
15

16 &tel{ &true ;> o(load)
17 ;> o(wait) ;> o(shoot) }.

Listing 1: Yale Shooting Scenario in telingo.

Listing 1 shows a simple encoding of the well-known
Yale Shooting scenario in telingo. Rules are organized
in groups that follow the #program directive. For instance,
lines 2-10 correspond to dynamic rules that affect all time
points t > 0 in the temporal trace. Predicates preceded by ’
(read as “previous”) refer to the situations at t−1 and all the
rest to the situation at t. For instance, lines 2-3 assert that
if we load the gun at t when it was unloaded at t − 1; the
gun is caused to be loaded at t. Similarly, lines 4-7 assert
that shooting a gun that was loaded causes the turkey to be
dead and the gun to be unloaded, respectively. Line 8 tells
us that any caused value must also hold, whereas line 9 de-
fines the abbreviation c(F ) to mean that fluent F has been
caused for some value V . Line 10 is a compact and sim-
ple representation of the inertia law: if fluent F held value
V before and we cannot prove it was caused (note the use
of default negation) then it keeps the same value V . Lines

13-17 correspond to initial rules, that is, those that refer
to the situation at t = 0. For instance, 13-14 assert that, ini-
tially, the turkey is alive and the gun is loaded. The construct
&tel is used to introduce any temporal formula in the syn-
tax of Linear Temporal Logic (Pnueli, 1977). For its use in
this paper, it suffices to observe that F ;> G stands for the
formula F ∧ ©G, that is, F holds now and G holds in the
next state. Operator ;> is right-associative: F ;> G ;> H
stands for F ∧ ©(G ∧ ©H). Thus, lines 16-17 assert that
we load the gun at t = 1, then wait and then shoot. The
telingo solver searches for answer sets using an iterative
deepening strategy where the trace length (called horizon) is
increased step by step until a solution is found. In our exam-
ple, we obtain a unique temporal answer set where the gun
is unloaded and the turkey is dead at t = 3 (among other
facts).

4 A Segment-Based Encoding of String
Loops

We proceed next to summarise the main aspects of our
Temporal ASP formalisation for string theories. For space
reasons, we will just show the main relevant parts of the
telingo encoding: the whole package can be found in the
stringloops public repository2. As said before, we use the
African Ring puzzle (Figure 3(a)) as a running example. For
simplicity, we consider the initial state in Figure 8 where
the tips of the string cross the post hole rather than being
linked to the post. In this way, we can ignore loops formed
by linked objects (which is a simple elaboration) and con-
centrate on those formed by string passing holes. The puzzle
solution is not affected, assuming that the string tips are not
allowed to pass through the post hole. Our formalisation uses
the same predicates h(F, V ), c(F, V ) and o(A) seen in the
previous section, where F is some fluent, V one of the val-
ues of F and A is some action. Each string segment is identi-
fied by a unique natural number. For instance, in Figure 8 we
have segments 0 to 7. An integer fluent max will keep the
maximum segment number used so far. A string consists of a
sequence of segments and crossings that is captured by three
main fluents, start, next and cross. Given a string S and a
segment X , start(S) represents the starting segment of S,
next(X) represents the next segment of X and cross(X)
represents the outgoing hole face crossed by X . The value of
cross(X) is the outgoing hole face f(H,D) of a crossing of
the segment X towards the hole H , where D represents the
face direction, positive D = p or negative D = n. Lines 2-9
of Listing 2 show the set of facts corresponding to the initial
state in Figure 8. It is worth to note that the string crosses
twice one of its own loops, denoted as l(4, 4). This loop is
formed because segment 4 comes from the previous crossing
cross(3) to f(h, n) whereas cross(4) goes toward the op-
posite hole face f(h, p). In general, l(X,Y ) denotes a loop
formed by two (possibly non-consecutive) crossings through
the same hole but in opposite directions. These loops can
be defined in terms of the fluents next and cross as shown
in Listing 3. The predicate connect(X,Y ) is first defined
as the transitive closure of h(next(X), Y ). Then, the two

2https://github.com/cabalar/stringloops.git

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

185



rules for the predicate loop(X,Y ) are self-evident: function
@opp(F) just returns opp(F ). Using these rules on facts
from Listing 2, we can actually derive five loops denoted
as l(4, 6), l(4, 4), l(3, 5), l(1, 6), l(1, 4). A loop can be in-
cluded in a parent loop: for instance, loop l(4, 4) is included
in l(4, 6) (which covers segments 4, 5 and 6) and this, in its
turn, is included in l(1, 6) that, in this example, is a parent
loop of all the rest.

1 #program initial.
2 h(start(s),0).
3 h(next(0),1). h(cross(0),f(h,n)).
4 h(next(1),2). h(cross(1),f(r,p)).
5 h(next(2),3). h(cross(2),f(l(4,4),p)).
6 h(next(3),4). h(cross(3),f(h,n)).
7 h(next(4),5). h(cross(4),f(h,p)).
8 h(next(5),6). h(cross(5),f(l(4,4),n)).
9 h(next(6),7). h(cross(6),f(h,p)).

10

11 &tel{ &true
12 ;> o(slide(r,p))
13 ;> o(pick(4,f(h,p))) & o(embrace(5))
14 ;> o(pull(l(9,9))) ;> o(shrink)
15 ;> o(pull(l(4,4))) ;> o(shrink)
16 ;> o(slide(r,p))
17 ;> o(slide(r,p))
18 ;> o(pull(l(10,10))) ;> o(shrink)
19 ;> o(pull(l(12,12))) ;> o(shrink)
20 ;> o(pull(l(3,3))) ;> o(shrink)
21 ;> o(slide(r,p))
22 }.

Listing 2: Initial state and sequence of actions.

1 #program always.
2 connect(X,Y):-h(next(X),Y).
3 connect(X,Y):-h(next(X),Z),connect(Z,Y).
4

5 loop(X,Y) :- h(cross(W),F),h(next(W),X),
6 h(cross(Y),F2),F2=@opp(F),connect(X,Y).
7 loop(X,X) :- h(cross(W),F),h(next(W),X),
8 h(cross(X),F2), F2=@opp(F).

Listing 3: Definition of loops.

The African Ring can be solved performing the sequence
of actions in lines 12-21 of Listing 2. As we explained be-
fore, in this work, we have focused on the simulation of
these actions, since the precise formalisation of their effects
is a challenging, still unsolved, problem. Obtaining this se-
quence of actions as a result of an efficient planning method
is right now unfeasible if we directly use the current formal-
isation in telingo. However, an automated planning tool
cannot be designed if we cannot even predict the result of
a single transition step in a precise way. That was the situ-
ation before the current work: now a program can describe
the result accurately. The domains considered in this work
constitute a challenge for state-of-the-art planning systems
(as pointed out in Santos and Cabalar (2013a)) since states
must be represented by arbitrarily long lists or an arbitrar-
ily growing set of segments. As a proof-of-concept, in (Ca-

balar and Santos, 2011), we proposed a planner for a simpler
string-puzzle domain (without string loops) that solved the
Fisherman’s Folly puzzle. Efficient planning, however, con-
stitutes a different research goal per se, where we plan to
explore more efficient ASP encodings. This problem is left
for future work.

Although in the stringloops repository we have en-
coded other kinds of actions (like passing string tips and
linked objects through holes), we will focus here on the three
basic actions used in the African Ring solution: slide, pick
and pull.

4.1 The Slide Action
The action slide(R,D) is applicable on a ring R crossed by
a unique string S and performs a movement towards the pos-
itive or the negative tip of the string, i.e., D ∈ {p, n}. Fig-
ure 4 shows a diagram and a listing: both correspond to slid-
ing the ring R towards the positive tip of the string. We only

X Y

R

Z
slide(R,p)

X Y

R

Z

1 #program dynamic.
2 slided(D,X,f(R,E)) :-
3 o(slide(R,D)), ’h(cross(X),f(R,E)).
4 slided(D,X) :- slided(D,X,_).
5

6 c(cross(X),F) :- slided(p,X),
7 ’h(next(X),Y), ’h(cross(Y),F).
8 c(cross(Y),F) :- slided(p,X,F),
9 ’h(next(X),Y).

10

11 upd_end(Y,X):-slided(p,X),’h(next(X),Y).
12

13 upd_start(Z,Y) :- slided(p,X),
14 ’h(next(X),Y), ’h(next(Y),Z).
15

16 remove(X):- slided(p,X),
17 ’h(next(X),Y), ’end(S,Y).
18 c(next(X)) :- remove(X).
19 c(cross(X)) :- remove(X).

Figure 4: Sliding R towards the end of the string.

show a partial formalisation of this movement – the negative
slide is similar. Lines 2-3 in the listing tells us that, when
slide(R,D) occurs, the predicate slided(D,X,F ) captures
the slide direction D, the string segment X that was en-
tering the ring and the outgoing ring face F . The predi-
cate slided(D,X) just collects the first two arguments. Note
that, in the diagram, the sequence of segments formed by
X → Y → Z is maintained but their crossings are swapped.
This last feature is captured by Lines 6-9. Lines 11-14 are
used to rename those previous loops (referred in crossings)
that may be affected by this change. For instance, any loop

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

186



of the form l(S, Y ) should become now l(S,X) since the
old segments X and Y become now X altogether. Pred-
icate upd end(Y,X) is used to perform this change (we
omit its encoding). Similarly, upd start(Z, Y ) renames all
loops of the form l(Z,E) into l(Y,E). Finally, lines 16-19
cover the case in which Y is the last segment of the string.
When this happens, we remove all facts for next(X) and
cross(X) by releases them from inertia, so that Y will not
be referred any more and X will become the last string seg-
ment. Figure 9(a), shows the result of applying slide(r, p)
on the African Ring’s initial situation in Figure 8. The ring r
(the small ellipse) is slided towards the end of the string and
passes through loop l(4, 4), which was the next crossing in
that direction.

4.2 The Pick Action
The next action used in the African Ring puzzle is pick-
ing the string. The action pick(X,F ) passes some arbitrary
point inside the segment X towards the hole face F creat-
ing a new loop. Figure 5(a) contains the corresponding di-
agram for this action. As we can see, picking creates two
new segments, M +1 and M +2, where M was the pre-
vious maximum number used as segment identifier (as we
saw, this number is captured by fluent max). The creation

X

F

X M+2

M+1

F

(a) Segments and crossings created by pick(X,F ).

W

X

W
X

M+1

M+2

F F

(b) Effects of pick(X,F ) and embrace(W ).

Figure 5: Effects of action pick.

of these segments and crossings follows a similar pattern as
lines 6-9 of Figure 4, so we omit that part of the encoding.
As happened with slide, some loop names may be affected
by these changes. In particular, we include the rule
upd_end(X,M+2) :- o(pick(X,F)),

’h(cross(X),F1), F!=F1, ’h(max,M).

that, when X was not crossing towards F , renames any loop
l(A,X) to l(A,M+2), since the previous segment X has
been decomposed now into the sequence X → M +1 →
M+2. The most complicated situation we may face when
picking is when X was part of a loop l(A,B) and the loop
end was crossing towards F . When this happens, three new

loops are created: l(A,X), l(M + 1,M + 1) and l(M +
2, B) (if B 6= X) or l(M + 2,M + 2) if B = X . For
instance, Figure 5(b) shows a simple case where X is part
of the loop l(X,X) that is already crossing towards F . In
this case, the three resulting loops are (the new) l(X,X),
l(M + 1,M + 1) and l(M + 2,M + 2). The complication
here comes when we have one or more segments crossing
that loop: it is unclear which of the new loops, the first one or
the last one, will “inherit” those crossings. Figure 5(b) shows
one of the three crossing segments called W that has been
assigned to the loop l(M + 2,M + 2) while the other two
remain in l(X,X). To remove this uncertainty, we combine
action pick(X,F ) with a second action embrace(W ) that
may be applied on several segments and points out which of
them will be assigned to the last loop. Listing 4 shows the
effects of picking when X is inside some loop crossed by
other segments.

1 pickcross(W,A,B,D) :- o(pick(X,F)),
2 ’inloop(X,A,B),’h(cross(B),F),
3 ’h(cross(W),f(l(A,B),D)).
4

5 % is assigned to l(A,X), if not embraced
6 c(cross(W),f(l(A,X),D)) :- o(pick(X,_)),
7 pickcross(W,A,_,D), not o(embrace(W)).
8

9 % is assigned to l(M+2,...) if embraced
10 c(cross(W),f(l(M+2,B),D)) :-
11 o(pick(X,_)),
12 pickcross(W,A,B,D), B!=X,
13 o(embrace(W)), ’h(max,M).
14 c(cross(W),f(l(M+2,M+2),D)) :-
15 o(pick(X,_)),
16 pickcross(W,A,X,D),
17 o(embrace(W)), ’h(max,M).

Listing 4: Effects of pick(X,F ), if X is in a crossed loop.

Finally, the diagram in Figure 9(b) is the result of per-
forming, on the state shown in Figure 9(a), the actions
pick(4, f(h, p)) and embrace(5) simultaneously. Note that
we pick segment X = 4 that was also a loop crossed by
segments 2 and 5.

4.3 The Pull Action
The third action we use in the solution of the African Ring
is pulling a loop back through its originator hole. The ac-
tion pull(L) is exclusively applied on some existing loop L.
Pulling can be seen as the opposite action of picking: for in-
stance, if we execute pull(l(M+1,M+1)) in the state of
the diagram on the right in Figure 5(a) we obtain the state
in the left diagram, where the loop has been destroyed (note
that picking always creates a new loop). The effects of this
action constitute the most elaborated part of the present for-
malisation. To avoid introducing errors or missing possible
cases, we have separated each pull action into two transi-
tions: in a first step, the execution of pull(L) creates new
elements as required, but may also possibly remove exist-
ing crossings, leaving their associated segments untouched.
As a result, we may have sequences of segments only linked

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

187



by the fluent next but without actually passing through any
crossing using fluent cross. In a second, consecutive step,
we perform what we have called a shrink operation. This
fictitious action exclusively takes care of each sequence of
segments without crossings, and joins them together in a
unique segment.

A first almost trivial case of pull(L) is when L is not
crossed at all. When this happens, we just remove the two
crossings that originated the loop, by releasing them from
inertia through predicate c(·). As we mentioned before,
the action shrink will then join the resulting consecutive
segments. To illustrate this behaviour, take the application
of pull(l(3, 3)); shrink on Figure 10(c) to produce Fig-
ure 10(d). The action pull(l(3, 3)) just removes the two
crossings through hole h leaving the sequence of segments
16→ 3→ 14 without any intermediate crossing. After that,
shrink collapses this sequence into the unique segment 16
and updates the whole state accordingly.

1 crossedby(Z,D) :-
2 ’h(cross(Z),f(L,D)), o(pull(L)).
3 crossed :- crossedby(_,_).
4 c(cross(W)) :- not crossed,
5 o(pull(l(X1,_))), ’h(next(W),X1).
6 c(cross(X2)) :- not crossed,
7 o(pull(l(_,X2))).

Listing 5: Pulling an uncrossed loop.

When the pulled loop is crossed by other segments, the situ-
ation is much more complicated. The problem in this case
is that these crossing segments will be indirectly picked
through the hole originating the loop. For simplicity, we
have only formalised pull(L) when L is crossed by a unique
segment. This simplified action suffices to formalise the
most general case, since we can decompose any pull by a
sequence of several picking and embracing actions. For in-
stance, in Figure 9(a), we would normally pull the whole
loop l(4, 4) towards the positive (upwards) face of h. How-
ever, this loop is crossed by two segments 2 and 5 and, thus,
we decompose this movement into three actions: we first
pick segment 4 towards f(h, p) embracing 5; then we pull
the right loop l(9, 9); and finally, we pull the loop the left
loop l(4, 4). In this way, we can see Figure 9(d) as the over-
all result of pulling l(4, 4) on Figure 9(a). The direct effects
of pulling a crossed loop are described in Figure 6 that con-
tains both the rules and a diagram describing their meaning.
In the diagram, the picked string is coloured in grey. Lines
2-3 create the new loop in the picked string formed by two
new segments, M + 1 and M + 2. We use of two segments
rather than a single one because one of the possible effects
is that the picked string inherits a crossing through a parent
loop, as we will see later on. The rest of the rules capture the
transformations shown in the diagram. Segments X2 and Y
will eventually collapse when we execute action shrink.

Finally, the action pull(L) may produce effects on the
other loops that are related to L. These effects are partially
shown in Listing 6. One of those situations is when L has
a parent loop, as described in lines 2-7 and depicted in de-
tail in Figure 7. The most relevant effect in this case is that

W
W

X1 X2

X2
X1

Y

Y

M+1 M+2

Z U Z U

F F

1 c(max,M+2) :- crossed, ’h(max,M).
2 c(next(M+1),M+2) :- crossed, ’h(max,M).
3

4 % Pulled string
5 c(cross(W), f(l(M+1,M+2),D)) :-
6 o(pull(l(X1,_))), ’h(next(W),X1),
7 crossedby(Z,D), ’h(max,M).
8 c(cross(X2)) :- o(pull(l(_,X2))),

crossed.
9

10 % Picked string
11 c(next(Z),M+1):-
12 crossedby(Z,_),’h(max,M).
13 c(cross(Z),F) :- crossedby(Z,_),
14 o(pull(l(_,X2))),
15 ’h(cross(X2),F), ’h(max,M).
16 c(next(M+2),U) :- crossedby(Z,_),
17 ’h(next(Z),U), ’h(max,M).
18 c(cross(M+2),F1) :- crossed,
19 o(pull(l(_,X2))),
20 ’h(cross(X2),F),F1=@opp(F),’h(max,M).

Figure 6: Direct effects of pulling a crossed loop.

X1 X2

X2X1

B

M+1 M+2

Z U Z U

F F

W Y

A B

W Y

A

Figure 7: Pulling l(X1, X2) with parent loop l(A,B).

0

1

2

3 5

4
6

7

Figure 8: Initial state of the African Ring.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

188



the picked string inherits a crossing through the parent loop
l(A,B). A second situation that affects other loops is when
L is pulled in a situation where there is an adjacent loop
on its left or on its right. In the listing, we only show the ef-
fects on a left adjacent loop – right adjacent loops are treated
symmetrically. To understand the situation in a simple way,
imagine that we follow backwards segment W in the dia-
gram in Figure 6 and we find out that the string actually
comes from the same hole, forming a loop l(A,W ) adjacent
to l(X1, X2) on its left. If l(A,B) has no parent loops, and
some segment was crossing l(A,W ), this crossing will dis-
appear, since the loop is destroyed: this is captured by rule in
lines 10-13. On the other hand, if l(A,B) was inside some
parent loop P , then any crossing through l(A,W ) must be
replaced by the parent loop P in the whole state. This is done
in lines 16-21 that use the auxiliary predicate upd loop. To
conclude this section, we include in Figures 9 and 10 the
complete sequence of states generated by the execution in
Listing 2, starting from the initial state displayed in Figure 8.
As commented before, we assume that each pull action is
always followed by a shrink action to remove possible se-
quences of segments without intermediate crossings.

1 % Parent loop
2 c(cross(M+1),f(l(A,B),D)) :-
3 o(pull(l(X1,X2))), crossed,
4 ’parentloop(l(X1,X2),l(A,B)),
5 ’h(cross(X2),f(H,_)),
6 ’h(cross(B),f(H2,_)), H!=H2,
7 crossedby(_,D), ’h(max,M).
8

9 % l(A,W) left adjacent loop, no parent
10 c(cross(Z)) :- o(pull(l(X1,_))),
11 ’h(next(W),X1), ’leafloop(l(A,W)),
12 not ’hasparent(l(A,W)),
13 ’h(cross(Z),f(l(A,W),_)).
14

15 % Left adjacent loop with parent P
16 upd_loop(l(A,W),P) :- o(pull(l(X1,_))),
17 ’h(next(W),X1), ’leafloop(l(A,W)),
18 ’parentloop(l(A,W),P).
19

20 c(cross(W),f(L2,D)) :- upd_loop(L1,L2),
21 ’h(cross(W),f(L1,D)).

Listing 6: Effects of pull(L) on other loops.

5 Related Work
A recent up-to-date interdisciplinary survey of the investiga-
tion of knots from various disciplines is presented in (San-
tos, Cabalar, and Casati, 2019). Within this survey, only a
few references can be considered as related to the work de-
scribed in this paper. Strings and pins are used in (Freksa
et al., 2018) as the medium for problem solving extending
the range of possible solutions that can be obtained from
using other tools, such as compass and straightedge. Three
examples of spatial problem solving are given by Freksa et
al. (2018): the construction of an ellipse, the solution for the
shortest path problem and the angle trisection problem. The

0

1

2

3 5

4
6

7

(a) After slide(r, p).

0

1

2

3 5

4

6

7
8

9

(b) After pick(4, f(h, p)), embrace(5).

0

1

2

3 10

4

6

7
8

9

(c) After pull(l(9, 9)); shrink.

0

1

2 3

10

6

7

9

412

(d) After pull(l(4, 4)); shrink.

0

1

2

3 10

6

7

9

412

(e) After slide(r, p).

Figure 9: Formal solution for the African Ring puzzle (I).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

189



0

1

2

3 10

6

7

9

12

4

(a) After slide(r, p).

7

10

9

412

14

1

0
3

2

(b) After pull(l(10, 10)); shrink.

7

10

9

412

14

1

0
3

16

(c) After pull(l(12, 12)); shrink.

7

10

12

16
1

0

9

4

(d) After pull(l(3, 3)); shrink.

7

10

9

412

16
1

0

(e) After slide(r, p).

Figure 10: Formal solution for the African Ring puzzle (II).

fundamental idea in that work was that spatial problem solv-
ing depends on the medium where the inferences are con-
ducted, whereas, in the present paper we aim to abstract the
medium by means of a formal representation. Closer to the
kind of problems reported in the present work is the knot
equivalence problem cited in (Turing, 1954), where states
of spatial puzzles are represented as strings of symbols, and
actions are substitutions of subsets of each of these sym-
bols with other strings. Nevertheless, if the problem has a
solution, there should be an algorithm capable of finding it.
To the best of our knowledge, within the current automated
reasoning literature, only our previous work has tackled this
problem (Cabalar and Santos, 2006; Santos and Cabalar,
2008; Cabalar and Santos, 2011, 2016; Santos and Cabalar,
2016).

6 Conclusions

We have provided a formalisation of scenarios involving
holed objects and strings, including string loops treated as
holes that use the string segments as basic domain entities. A
state is represented in terms of a pair of fluents that describe,
for each segment, the next segment in the string and the
next crossed hole, respectively. Using that representation,
we have provided the axiomatisation of three basic actions,
slide, pick and pull, that are general enough to cover sce-
narios in which a string may cross its own loops, something
not possible in the previous related formalisations. The ax-
iomatisation has been encoded in the Temporal Answer Set
Programming (ASP) tool telingo which has been used to
describe the first formalisation of the solution to the African
Ring problem, to the best of our knowledge.

In principle, the same temporal ASP encoding can also be
used for planning, and not only for simulation of the effects.
To do so, we must also include additional constraints de-
scribing allowed movements: for instance, typically, string
tips may be linked to large objects that cannot pass through
some holes. In the case of the African Ring puzzle, the ring
itself cannot pass through any other holed object in the do-
main. However, our initial experiments for solving string
planning problems with Temporal ASP have only succeeded
on extremely small scenarios. Future work will explore a
more efficient encoding for planning and the extension to
more general or combined actions.

In a broader sense, research on the several aspects of the
manipulation of (and reasoning about) flexible objects such
as strings has a cross disciplinary interest. Beyond the far
reaching set of applications of topological knot theory, the
use of strings and ropes were one of the earliest kinds of
tools used by the primitive hunters and gatherers (Santos,
Cabalar, and Casati, 2019). We claim that reasoning about
knots is a distinctive aspect of intelligence where cognition,
knowledge representation and reasoning play a crucial role
that cannot be replaced by pattern matching or statistical pre-
diction algorithms. The actual development of robust knowl-
edge representation and efficient problem solving strategies
for this domain is still a largely unexplored area that de-
serves future investigations.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

190



Acknowledgements
We wish to thank the anonymous reviewers for their help-
ful comments and suggestions. This work has been par-
tially supported by MINECO (grant TIN2017-84453-P) and
Xunta de Galicia (grant GPC ED431B 2019/03), Spain.

References
Aguado, F.; Cabalar, P.; Diéguez, M.; Pérez, G.; and Vidal,

C. 2013. Temporal equilibrium logic: a survey. Journal
of Applied Non-Classical Logics 23(1-2):2–24.

Cabalar, P., and Santos, P. 2006. Strings and holes: an exer-
cise on spatial reasoning. In Proc. of IBERAMIA, volume
4140 of LNAI. Springer. 419–429.

Cabalar, P., and Santos, P. E. 2011. Formalising the Fish-
erman’s Folly puzzle. Artificial Intelligence 175(1):346–
377.

Cabalar, P., and Santos, P. E. 2016. A qualitative spatial rep-
resentation of string loops as holes. Artificial Intelligence
238:1 – 10.

Cabalar, P.; Kaminski, R.; Schaub, T.; and Schuhmann, A.
2018. Temporal answer set programming on finite traces.
Theory and Practice of Logic Programming 18(3-4):406–
420.

Cabalar, P.; Kaminski, R.; Morkisch, P.; and Schaub, T.
2019. telingo = ASP + time. In Balduccini, M.; Lierler, Y.;
and Woltran, S., eds., Logic Programming and Nonmono-
tonic Reasoning - 15th International Conference, LPNMR
2019, Philadelphia, PA, USA, June 3-7, 2019, Proceed-
ings, volume 11481 of Lecture Notes in Computer Sci-
ence, 256–269. Springer.

dos Santos Hirth, T. W. N. 2015. Luca pacioli and his 1500
book de viribus quantitatis. Master’s thesis, Universidade
de Lisboa.

Freksa, C.; Barkowsky, T.; Dylla, F.; Falomir, Z.; Olteteanu,
A.-M.; and van de Ven, J. 2018. Spatial problem solving
and cognition. In Zacks J, T. H., ed., Representations in
Mind and World. New York: Routledge. 156–183.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Wanko, P. 2016. Theory solving made
easy with clingo 5. In Carro, M.; King, A.; Saeedloei, N.;
and Vos, M. D., eds., Technical Communications of the
32nd International Conference on Logic Programming,
ICLP 2016 TCs, October 16-21, 2016, New York City,
USA, volume 52 of OASICS, 2:1–2:15. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik.

Gelfond, M., and Lifschitz, V. 1988. The stable models
semantics for logic programming. In Proc. of the 5th Intl.
Conf. on Logic Programming, 1070–1080.

Kauffman, L. H. 2005. The mathematics and physics of
knots. Reports on Progress in Physics 68(12):2829.

Marek, V., and Truszczyński, M. 1999. Stable models and
an alternative logic programming paradigm. Springer-
Verlag. 169–181.

McCarthy, J., and Hayes, P. J. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
In Machine Intelligence, 463–502. Edinburgh University
Press.

McCarthy, J. 1959. Programs with common sense. In
Proc. of the Teddington Conference on Mechanization of
Thought Processes, 75–91.

Menasco, William W.; Thistlethwaite, M., ed. 2005. Hand-
book of Knot Theory. Elsevier.

Morgenstern, L., and McIlraith, S. A. 2011. John mccarthy’s
legacy. Artificial Intelligence 175(1):1 – 24. John Mc-
Carthy’s Legacy.

Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals
of Mathematics and Artificial Intelligence 25:241–273.

Pacioli, L. 2009. De viribus quantitatis. Aboca.

Pearce, D., and Valverde, A. 2004. Towards a first or-
der equilibrium logic for nonmonotonic reasoning. In
Alferes, J. J., and Leite, J. A., eds., Logics in Artificial
Intelligence, 9th European Conference, JELIA 2004, Lis-
bon, Portugal, September 27-30, 2004, Proceedings, vol-
ume 3229 of Lecture Notes in Computer Science, 147–
160. Springer.

Pnueli, A. 1977. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer Science,
46–57. IEEE Computer Society Press.

Reidemeister, K. 1983. Knot Theory. BCS Associates.

Rusca, P. 1743. Il maestro de’ giuochi piacevoli per uso
delle civili conversazioni ornato con figure in Rame, con
alcuni quesiti aritmetici, ed una regola facile per descri-
vere orologgj a sole orizontali.

Sanchez, J.; Corrales, J.-A.; Bouzgarrou, B.-C.; and
Mezouar, Y. 2018. Robotic manipulation and sensing
of deformable objects in domestic and industrial appli-
cations: a survey. The International Journal of Robotics
Research 37(7):688–716.

Santos, P. E., and Cabalar, P. 2008. The space within Fish-
erman’s Folly: Playing with a puzzle in mereotopology.
Spatial Cognition & Computation 8(1-2):47–64.

Santos, P., and Cabalar, P. 2013a. An investigation of
actions, change and space. In ICAPS 2013 - Proceed-
ings of the 23rd International Conference on Automated
Planning and Scheduling, ICAPS 2013 - Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling, 484–485. null ; Conference date: 10-06-
2013 Through 14-06-2013.

Santos, P. E., and Cabalar, P. 2013b. An investigation of
actions, change, space within a hole-loop dichotomy. In
Proc. of the 11th Intl. Symp. on Logical Formalizations of
Commonsense Reasoning (Commonsense’13).

Santos, P. E., and Cabalar, P. 2016. Framing holes within
a loop hierarchy. Spatial Cognition & Computation
16(1):54–95.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

191



Santos, P. E.; Cabalar, P.; and Casati, R. 2019. The knowl-
edge of knots: an interdisciplinary literature review. Spa-
tial Cognition & Computation 19(4):334–358.

Turing, A. M. 1954. Solvable and unsolvable problems.
Science News 31:7–23.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

192


