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Abstract

We look at program synthesis where the aim is to automati-
cally synthesize a controller that operates on data structures
and from which a concrete program can be easily derived. We
do not aim at a fully-automatic process or tool that produces
a program meeting a given specification of the program’s be-
haviour. Rather, we aim at the design of a clear and well-
founded approach for supporting programmers at the design
and implementation phases.
Concretely, we first show that a program synthesis task can
be modeled as a generalized planning problem. This is done
at an abstraction level where the involved data structures are
seen as black-boxes that can be interfaced with actions and
observations, the first corresponding to the operations and the
second to the queries provided by the data structure. The ab-
straction level is high enough to capture intuitive and com-
mon assumptions as well as general and simple strategies
used by programmers, and yet it contains sufficient structure
to support the automated generation of concrete solutions (in
the form of controllers). From such controllers and the use
of standard data structures, an actual program in a general
language like C++ or Python can be easily obtained.
Then, we discuss how the resulting generalized planning
problem can be reduced to an LTL synthesis problem, thus
making available any LTL synthesis engine for obtaining the
controllers. We illustrate the effectiveness of the approach on
a series of examples.

1 Introduction
Program synthesis is the problem of turning a specification
into an executable. Broadly speaking, there are two types
of programs: transformational (that query or transform fi-
nite but unbounded data) and reactive (that control and re-
act to an infinite stream of data, e.g., controllers or pro-
tocols). Synthesis for transformational programs was pio-
neered by (Green 1969; Waldinger and Lee 1969), while
for reactive programs in (Church 1963; Abadi, Lamport,
and Wolper 1989; Pnueli and Rosner 1989). The latter
has an elegant and comprehensive theory (Finkbeiner 2016;
Ehlers et al. 2017; Gerstacker, Klein, and Finkbeiner 2018),
and is deeply related to nondeterministic planning (De
Giacomo and Vardi 2015; De Giacomo and Vardi 2016;

∗Work performed during sabbatical leave at Universidad Carlos
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De Giacomo and Rubin 2018; Camacho et al. 2018; Cama-
cho, Bienvenu, and McIlraith 2019; Aminof et al. 2019).

In this paper we consider the synthesis of transforma-
tional programs that involve manipulation of data structures,
like lists, trees, and graphs. Typical examples of desired pro-
grams are finding the minimum in a list, searching for an el-
ement in a tree, and traversing a graph. We synthesize trans-
formational programs by devising requirements on their ex-
ecutions, expressing such requirements as an LTL reactive
synthesis task, and finally solving the resulting task. We do
not propose a fully automated approach where a program
is produced that satisfies a given declarative specification
of the input/output requirement. Rather, we devise a well-
founded approach aimed at supporting program design and
implementation. We consider a setting where the designer
provides a declarative pseudocode specification in terms of
i) execution assumptions, that formalize abstract knowledge
on how the data structures evolve during execution, and ii)
the goal, that formalizes the desired executions of the sought
program.

Execution assumptions can be transitional or temporal.
Transitional assumptions capture the changes in program
state as operations and queries over data structures are ex-
ecuted. These changes, however, are expressed using LTL
over a language of action and observable symbols that cap-
ture the behaviour of the data structures in terms of high-
level features. For example, a list is characterized by an ob-
servable that tells whether the cell beneath the cursor has a
successor cell, and by the operation that moves the cursor to
the next cell and that is executable only when such next cell
exists. Since the features do not capture the state of the data
structures (e.g., length of the list or cursor’s position within
the list), the transitional assumptions involve nondetermin-
ism (e.g., when the cursor moves, the next cell may or may
not have a next cell).

Temporal assumptions express properties that are
achieved after several steps along an execution, such as mov-
ing repeatedly to the next item in a finite list eventually leads
to the last item in the list. These assumptions, that are not
expressible with nondeterminism alone, are essential for the
correct modelling of executions over concrete data struc-
tures. They are typically used implicitly by the programmer
without being formalized. Understanding the implicit tem-
poral assumptions constitute a real effort that the program-
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mer confronts when devising an algorithm. In comparison,
the transitional assumptions directly follow from the data
structures’ specification.

Finally, the goal description specifies the set of successful
executions of the program sought in terms of LTL formulas
over the action and observable symbols. Such a description
fulfills the role of a formal input/output description of the
programming synthesis task, and is a clear benefit of the pro-
posed approach to synthesis since input/output descriptions
are difficult to produce and often involve the use of higher-
order logics or operational models. In the case of moving
through a list, for example, a successful execution reaches a
cell that has no successors, while in the case of tree traversal,
a successful execution reaches a configuration with an empty
set of unexpanded nodes (provided that generated nodes are
automatically added to such a set).

When all the elements are expressed in the right format,
the programming task becomes the task of obtaining a con-
troller that generates executions that conform with the goal,
yet only the executions that conform with the transitional
and temporal assumptions are the ones required to conform
with the goal. In other words, since during execution of the
program on concrete data structures the induced trajectories
adhere to the (transitional and temporal) assumptions, the
controller must ensure that the goal is fulfilled on those ex-
ecutions; on the other hand, executions that do not satisfy
the assumptions do not need to be considered by the con-
troller as they are only possible in the abstraction but not in
the environment where the program executes (since the data
structures behave as expected).

We observe that a program can be represented as a finite-
state controller with observations (queries or tests) and ac-
tions (operations), and that automatically building it requires
a form of synthesis or planning in an infinite-state setting, as
the data present in the structures is unbounded, in general.
Effective techniques for program synthesis and planning
mainly focus on finite-state systems, while results on syn-
thesis for infinite-state systems are scarce (Levesque 1996;
Levesque 2005; Lin 2016; Lin 2018; Calvanese et al. 2018).
Observe also that execution assumptions and goals are logi-
cal requirements on the trajectories that the controller con-
siders/produces. The “procedural” flavor of such logi-
cal specifications correlates to some proposals in knowl-
edge representation and reasoning (Levesque et al. 1997;
De Giacomo, Lespérance, and Levesque 2000; Bacchus and
Kabanza 2000; Baier et al. 2008).

In order to reduce the synthesis task in the infinite-state
setting to a synthesis task in a finite-state setting, we rely
on generalized planning, i.e., planning for solving multiple
instances at once (Srivastava, Immerman, and Zilberstein
2008; Bonet, Palacios, and Geffner 2009; Hu and De Gia-
como 2011; Belle and Levesque 2016; De Giacomo et al.
2016; Bonet et al. 2017). We assume predefined data struc-
tures with parameterless operations and tests, but allow for
(finitely many) auxiliary registers to implicitly store parame-
ters and results. We then view programming for a given task
as a generalized planning problemQ that consists of an infi-
nite collection of planning problems P that share a common
set of applicable actions and a common set of observables;

for example, the task of traversing a list corresponds to a
problem Q whose instances P correspond to each possible
finite list, and all problems in P share the action to move to
the next element, or stay put, and share the observations of
whether there is a next element. On the other hand, differ-
ently from generalized planning, we do not require that the
goal of the programming task is expressible in terms of ob-
servables. This is because in our case the goal depends on
the actual state of the data structures and cannot always be
captured by the observables.

To obtain the finite-state controller that solves the gen-
eralized planning problem Q (and thus the programming
task), the infinite setQ of classical planning problems is ab-
stracted into a single nondeterministic problem QA which
is defined over the common sets of actions and observa-
tions, and that captures the transitional assumptions. This
abstraction however is often too coarse and without solution
because, due to the non-determinism, it admits spurious exe-
cutions that do not correspond to any execution on a concrete
problem P in Q. Temporal assumptions are then added,
expressed as linear-time temporal (LTL) formulas (Pnueli
1977), in order to prune the spurious executions and render
the abstraction solvable. Typical examples of such assump-
tions are forms of fairness for action effects (Bonet et al.
2017). In this work, we lift such “fairness” assumptions to
arbitrary temporal restrictions on the environment (Aminof
et al. 2019).

Concerning controller synthesis, we observe that while
FOND planners (Srivastava et al. 2011; Bonet and Geffner
2015) would be readily available to solve the abstract prob-
lemQA in absence of temporal assumptions, when these are
present, such tools cannot be exploited anymore. For this
reason, we require the designer to express the generalized
planning problemQA and the temporal assumptions in com-
pact form as LTL formulas in order to enable the use of LTL
synthesis tools. The choice of the tool is only a technical
detail: the problem we are solving is generalized planning
in presence of temporal assumptions.

We demonstrate the effectiveness of our approach on
some examples, which include (singly and doubly-linked)
list, tree, and graph traversal programs, as well as programs
for testing membership and finding the minimum in a list. In
our examples, we use the state-of-the-art native LTL synthe-
sis engine Strix (Meyer, Sickert, and Luttenberger 2018).

2 Generalized Planning
The framework adopted in this paper extends the framework
of Bonet et al. (2017).1 A planning instance is a determinis-
tic classical planning problem extended with an observation
function. Namely, each instance P defines a state model
〈S, s0, T, Act, A, f, obs,Ω〉 in compact form, where S is a
finite set of states, s0 ∈ S is the initial state, T ⊆ S is the set
of goal states, Act is the finite set of actions, A : S → 2Act

is the available-actions function, f : Act × S → S is the

1The crucial difference with Bonet et al. (2017) is that goals
in the single instances are different and not expressible directly
through the observables, i.e., we do not assume that the goals is
a Boolean combination of observables.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

153



deterministic state transition function, obs : S → Ω is the
observation function, and Ω is the finite set of observations.

A solution for an instance P is an action sequence
a0, . . . , an−1 that generates a goal-reaching state sequence
s0, . . . , sn; namely, each action ai in the sequence must be
applicable, i.e. ai ∈ A(si), the state si+1 must be the state
that follows action ai in state si, i.e. si+1 = f(ai, si), and
sn must be a goal state, i.e. sn ∈ T .

A generalized problem Q is a set of instances P with the
same actions Act, the same observations Ω, and the same
observable action preconditions.2 Having the same observ-
able action preconditions means that for every observation
ω ∈ Ω, there is a set of actions Aω ⊆ Act such that in every
instance P of Q, A(s) = Aω if obs(s) = ω.

A policy µ for a generalized problem Q is a
partial function that maps interleaved sequences
ω0, a0, ω1, a1, . . . , ai−1, ωi of observations and ac-
tions, ending in observations, into actions. A policy µ
is said to be memoryless if it only depends on the last
observation of the input sequence; i.e., µ(τ) = µ(τ ′) if τ
and τ ′ end in the same observation, for every interleaved
sequences τ and τ ′. A policy µ induces a unique sequence
of states and actions s0, a0, . . . , sn in each instance P of
Q where si+1 = f(ai, si), ai = µ(〈ω0, a0, . . . , ωi〉) and
ωi = obs(si), i ≥ 0. For convenience, we make all these
sequences of infinite length, assuming that all instances inQ
contain a no-op action stop with no preconditions or effects
which is applied forever when the execution induced by µ
reaches an observation-action prefix where µ is undefined
or returns a non-applicable action.

The policy µ solves an instance P if it induces a sequence
s0, a0, s1, a1, . . . over P that is goal-reaching; i.e. sn ∈ T
for some n. The policy µ solves the generalized problem Q
if it solves each problem P in Q.

Example 1. The following generalized planning problem
Q captures the task of traversing a singly-linked list from
the beginning, and then stops (forever). Let Q consist of
problems P` parameterized by the length ` of a list. Each
problem P` has action n(ext) that moves the cursor to the
next position (if present), and action s(top) that disables ac-
tion n. The states encode the current position pos of the
cursor, and the initial state has pos = 1. The goal is the state
in which pos = `. There are two observations, hasNext
that holds on states that have pos < `, and its complement
¬hasNext. The (memoryless) policy µ that only looks at
the last observation and is defined as µ(hasNext) = n and
µ(¬hasNext) = s solves Q.

Later, we will see an example of traversing a doubly-
linked list.

3 Observable Abstractions
For solving generalized planning problems Q where goals
are not observable, we consider an observation abstraction
QA of Q that is defined top-down as follows:

2In fact, observability of action preconditions it is not strictly
necessary, e.g., it is not assumed in (Hu and De Giacomo 2011),
but it simplifies our treatment.

Definition 1. An observation abstraction QA of a general-
ized problem Q is a triplet QA = 〈Qo,ΓF ,ΓG〉, where Qo

is the observation projection of Q, and ΓF and ΓG are re-
spectively (execution) temporal assumptions and goal con-
straints on trajectories over Qo that are sound for Q.
We now define the three components inQA, namely the ob-
servation projection Qo of Q, the temporal assumptions ΓF

sound for Q and the goal constraints ΓG sound for Q.
The observation projection captures the possible transi-

tions among observations over the instances P in Q is de-
fined as:
Definition 2. For a generalized problem Q, the observa-
tion projection Qo = 〈So, Io, Acto, Ao, F o〉 is the non-
deterministic state model defined by:
– So = Ω,
– Io = {ω | there is P in Q such that obs(s0) = ω},
– Acto = Act,
– Ao(ω) = Aω for every ω ∈ Ω,
– F o(a, ω) = {ω′ | there are P ∈Q, a∈Ao(ω) and s∈SP

such that obs(s) = ω and obs(f(a, s)) = ω′}
where Ω, Act and Aω refer to elements ofQ, and s0 and SP

are the initial state and state space of P respectively.
The observation projection is a (fully observable) non-
deterministic domain over the actions and observations that
are common to the instances in Q. It is similar to the ob-
servation projection of Bonet et al. (2017) but with no infor-
mation about the goal because it is no longer assumed to be
observable.

The temporal assumption ΓF encodes information in the
instances P (typically about fairness of effects) that is lost
in the projectionQo because it is not about individual obser-
vation transitions, but about entire observation trajectories
(Bonet et al. 2017). Formally:
Definition 3. A sound temporal assumption ΓF for Q is a
set of observation-action sequences ω0, a0, ω1, a1, . . . in the
projection Qo that includes all the infinite trajectories that
arise in instances P in Q.

The observation projection Qo is indeed non-
deterministic, but this non-determinism is a device of
the abstraction, and it is neither fair, as assumed in strong
cyclic solutions, nor adversarial, as assumed in strong
solutions (Cimatti et al. 2003). The temporal assumptions
encode constraints on the effects of non-deterministic
actions when these actions are applied infinitely often.

Finally, goals are expressed in the abstraction through
constraints ΓG on observation-action trajectories that en-
sure that the state-action trajectories in the instances are goal
reaching:
Definition 4. A sound goal constraint ΓG for Q is a set
of observation-action trajectories τ : ω0, a0, ω1, a1, . . . of
the projection Qo such that every state-action trajectory
s0, a0, s1, a1, . . . of a problem P in Q that gives rise to τ ,
i.e. for which ωi = obs(si), reaches the goal in P .

Example 1 (cont). For the generalized problem Q above,
the states in the observation projection Qo are the common
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observations, i.e., hasNext and ¬hasNext. The effect of
the action s(top) in the abstraction is deterministic, i.e. it
does not change the observation, but the effect of n(ext) is
non-deterministic as it can result in hasNext or¬hasNext.
The sound goal-constraint ΓG consists of all trajectories of
Qo in which ¬hasNext is observed. Finally, the sound tem-
poral assumption ΓF consists of all trajectories ofQo except
those where n is performed infinitely often and ¬hasNext
is never observed.

We now define the concept of solutions for the abstraction
QA. Let Γ be an assumption on observation-action trajecto-
ries, e.g., an execution assumption or a goal constraint. An
observation-action trajectory in Γ is said to satisfy Γ.

Definition 5. A policy µ solves the abstraction QA =
〈Qo,ΓF ,ΓG〉 of Q if the trajectories induced by µ on the
observation projection Qo that satisfy ΓF also satisfy ΓG.

The key property of a sound observation abstraction is that:

Theorem 1. If a policy µ solves a sound observation ab-
straction QA of Q, then the policy µ solves Q.

Proof. Let τ be an infinite state-action trajectory in an in-
stance P of Q induced by µ, and let obs(τ) be the infinite
observation-action trajectory associated with τ . By defini-
tion of Qo and ΓF , obs(τ) is a trajectory in Qo induced by
µ that also satisfies ΓF . Since µ solves QA, obs(τ) satisfies
ΓG. Then, τ is goal-reaching in P since ΓG is sound for Q.
Therefore, since τ is arbitrary, µ solves Q.

Notice that Theorem 1 is a soundness result, which is use-
ful only when the abstraction QA is solvable.

Example 1 (cont). In the example above, observe that
the trajectories in Qo induced by the policy µ that satisfy
the temporal assumption ΓF also satisfy the goal constraint
ΓG. On the other hand, ΓF is important since there are µ-
trajectories that neither satisfy ΓF nor ΓG. Hence, µ would
not be a solution if all µ-trajectories were considered.

4 LTL Observation Abstractions
The observation abstraction QA can often be expressed in
compact form, in particular as Linear-time Temporal Logic
(LTL) formulas (Pnueli 1977). This is our focus. The syntax
of LTL formulas over variables from the set V is

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | ◦ϕ | ϕUϕ,

where p ∈ V . Intuitively, pmeans that p is true in the current
time, ◦ϕ that ϕ is true in the next time step, and ϕUϕ′ that
i) eventually ϕ′ is true, and ii) at every step up until (but
not necessarily including) that time, ϕ is true. We use the
following usual abbreviations: ♦ϕ (read “eventually”) for
>Uϕ, and �ϕ (read “always”) for ¬(♦¬ϕ).

LTL formulas are interpreted over infinite trajectories (or
traces), i.e., infinite sequences, α = α0α1 . . . ∈ (2V )∞ of
propositional valuations. Given α and an LTL formula ϕ,
we inductively define when α satisfies ϕ at step i, written
α, i |= ϕ, as follows:

• α, i |= p iff p ∈ αi (for p ∈ V );

• α, i |= ¬ϕ iff α, i 6|= ϕ;
• α, i |= ϕ1 ∧ ϕ2 iff α, i |= ϕ1 and α, i |= ϕ2;
• α, i |= ◦ϕ iff α, i+ 1 |= ϕ;
• α, i |= ϕ1 Uϕ2 iff there exists j ≥ i s.t. α, j |= ϕ2, and

for all k, i ≤ k < j we have that α, k |= ϕ1.
We say that α satisfies ϕ, written α |= ϕ if α, 0 |= ϕ.

LTL synthesis (Pnueli and Rosner 1989) is the problem
of producing a controller that achieves a given property no
matter how the environment behaves. The idea is that the
environment and controller interact in discrete stages. At
stage i the environment sets the variables in some fixed set
X and the controller then responds by setting the variables
in some fixed (disjoint) set Y , producing a valuation Xi∪Yi
over the variablesX∪Y . This interaction repeats producing
an infinite sequence (X0∪Y0)(X1∪Y1) · · · of valuations. In
planning terminology, X can be viewed as a representation
of observations (i.e. Ω = 2X ), and Y as a representation of
actions (i.e.Act = 2Y ). A sequence (X0∪Y0)(X1∪Y1) · · ·
is induced by the policy µ if µ(〈X0, Y0, X1, Y1, · · · , Xi〉) =
Yi for every i. For an LTL formula ϕ over the variables X ∪
Y , a controller policy µ solves the LTL synthesis problem
for the formula ϕ if every sequence induced by µ satisfies
ϕ.3 When such a µ exists we say that ϕ is realizable by
the controller. Dually, we say that ϕ is realizable by the
environment if there is an environment policy, i.e., a function
that maps every finite trajectory (ending in an action) to a
state, that induces trajectories that satisfy ϕ.

LTL observation abstractions QA = 〈Qo,ΓF ,ΓG〉 are
observation abstractions represented in compact form by
LTL formulas (D,E, F,G) that are defined over the sym-
bols a and o encoding the actions and observations in QA

(i.e., over the variables in X and Y ). The formulas are:
• D for capturing the action preconditions of Qo, the re-

quirement of doing exactly one action at a time, and the
technical fact that once the action stop is done it is the
only applicable action;

• E for capturing the initial conditions, action effects, and
the frame axioms (persistence) of Qo (notice that both D
and E can be automatically computed from the observa-
tion projection Qo of Q, see e.g., (Aminof et al. 2019;
Camacho, Bienvenu, and McIlraith 2019));

• F for capturing ΓF , the execution temporal constraints on
the environment over Qo;
• G for capturing ΓG, the goal over Qo.

Intuitively, satisfying D and G is the responsibility of the
controller, while satisfying E and F is the responsibility of
the environment. In the presence of assumptions about the
environment behavior, such as our E and F , the synthesis
specification is taken to be an implication:

Env ⊃ Cntrl

where Env are the assumptions on the environment and
Cntrl is the specification of controller’s desired behavior

3In these formulas, there is no syntactic distinction between ob-
servations and actions, they are all propositional variables.
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(under the environment assumptions Env). Not every LTL
formula can be used for Env: it is required that the environ-
ment must have a strategy to enforce Env in spite of what
the controller does. Formally, Env must be realizable by
the environment, i.e., there must be a strategy for the envi-
ronment that solves Env. We refer to (Aminof et al. 2019)
for a thorough discussion.

In our case Env ⊃ Cntrl is detailed as follows:

• Env is D ⊃ (E ∧ F ), i.e., the environment guarantees
that when the preconditions are satisfied, the effects and
temporal assumptions hold.

• Cntrl is D ∧ G, i.e., (when Env is guaranteed) the con-
troller will guarantee that both the preconditions D and
the goal G hold.

Importantly, given what D, E and F represent, the re-
quirement that Env be realizable by the environment is al-
ways satisfied, as the following theorem shows.

Theorem 2. LetD,E, F , andG be LTL formulas represent-
ing the LTL observation abstractionQA = 〈Qo,ΓF ,ΓG〉 as
above. Then D ⊃ (E ∧ F ) is realizable by the environment.

Proof sketch. We need to find a strategy for the environment
such that every induced sequence that satisfies D also sat-
isfies E ∧ F . Intuitively, the environment can behave as
follows. It simulates the execution of some fixed concrete
instance P (with transition function f and initial state s0)
from Q, and on its turn simply outputs the observation of
the current state of P . That is, on the first turn, the environ-
ment outputs obs(s0). We assume the agent responds with
a single applicable action a0 ∈ A(s0) (otherwise we are
done), and then on its second turn, the environment outputs
obs(f(s0, a0)), and this process repeats. The resulting se-
quence satisfiesD (this is because we are in the case that the
agent always plays single applicable actions), and thus, by
construction of the environment strategy, the sequence also
satisfies E, i.e., it is a trajectory of P . By soundness of ΓF ,
the trajectory satisfies ΓF , and thus, by definition of F , the
trajectory also satisfies F .

The formula (D ⊃ (E ∧ F )) ⊃ (D ∧ G) is logically
equivalent to the formula D ∧ ((E ∧ F ) ⊃ G) which is the
one used below. The latter formula requires the policy µ to
prescribe actions that satisfy their preconditions, and in all
induced trajectories where E and F are true (i.e., the initial
conditions, dynamics, and temporal assumptions), the goal
G is true as well. Our task will be the synthesis of a policy
for the formula D ∧ ((E ∧ F ) ⊃ G). The correctness of the
approach is guaranteed by the following results.

Lemma 6. Let D, E, F , and G be LTL formulas represent-
ing the LTL observation abstractionQA = 〈Qo,ΓF ,ΓG〉 as
above. Then, if the policy µ solves the LTL synthesis prob-
lem for the formula D ∧ ((E ∧ F ) ⊃ G), then µ solvesQA.

Theorem 3. Let Q be a generalized planning problem, and
let QA be a sound observation abstraction of Q with corre-
sponding LTL formulas D, E, F , and G. Then every pol-
icy µ that solves the LTL synthesis problem for the formula
D ∧ ((E ∧ F ) ⊃ G) solves Q.

5 Our Framework at Work
We now show how to use the above framework for obtaining
controllers for program synthesis tasks. In each case, given
a description T (even in natural language) of a programming
task, take the following steps:
1. Think of T as a generalized planning problem QT , and

single out a common set of actions and observations;
2. Provide sound temporal assumptions and goal constraints

for the observation abstraction QA
T of QT ;

3. Write LTL formulas D, E, F , G characterizing the ob-
servation abstraction QA

T ;
4. Automatically solve the LTL synthesis problem for the

formula D ∧ ((E ∧ F ) ⊃ G), and output a solu-
tion/controller µ for QA

T if there is one. If there is no
solution, revise the formulas ΓF and ΓG, trying to make
the former stronger to prune further spurious executions
and the latter weaker to allow more goal-reaching execu-
tions, and go back to step 3.

Remark 1. Proving that this approach is correct requires
formalizing T , e.g., in mathematics, in logic, or in a for-
mal specification language such as Z (Spivey 1989). Such
a formalization would induce a generalized planning prob-
lem QT , e.g., by considering all the possible instantiations
of the data structures in the formalization. One could then
prove that the temporal assumption and goal constraint are
sound for QT , and so deduce, by Theorem 3, that a synthe-
sized controller µ solves QT , and hence that µ solves the
programming task T .

To illustrate our framework at work, we will work with
singly-linked lists, doubly-linked lists, trees, and graphs,
along with their corresponding operations, which operate as
expected (we omit details for brevity). We will make use of
the following: (finitely many) cursors that point to cells in
the data structures (like Java iterators) and (finitely many)
registers, if needed; sensors that compare values in the cells
pointed at by the cursors and in the registers, resulting in a
fixed set of booleans/observations; operations that move the
pointers in the structures and allow us to copy the content
of one pointed cell into another, resulting in a fixed set of
actions.

A number of elements are common among the various
models below. We use action s(top) as a final no-op indi-
cating termination (once done, it repeats forever), and re-
strict to executing exactly one action per step, expressed
using the XOR operator “⊕”. We also use the abbrevia-
tions: PERSISTS(p) to express persistence of p, i.e. (p ↔
◦p), and PERSISTS(p1, . . . , pn) to express persistence of
p1, p2, . . . , pn.

All controllers are obtained with the online demo version
of Strix (https://strix.model.in.tum.de/try) and computed in
less than 10 seconds.

Traversing a Singly-Linked List. The first task T is list
traversal, which involves visiting (with a cursor) each cell
of a list exactly once, starting from the first (leftmost) cell.
Actions and observations in the generalized problem QT as
well as the LTL formulas for the abstraction are as follows:
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• Observations: hasNext (cell pointed at by cursor has a
successor (next) cell)

• Actions: n(ext), move cursor to next cell, s(top)
• Formula D (preconditions, non-concurrent actions, and

stop action):

– �(n→ hasNext)
– �(n⊕ s)
– �(s→ ◦s)

• Formula E (initial conditions, effects, and frame):

– �(s→ PERSISTS(hasNext))

• Formula F (temporal assumptions):

– �♦n→ ♦¬hasNext
• Formula G (goal): visit all cells once, i.e., reach the end

and stay there (we could also use ♦¬hasNext as the cur-
sor can never go back; this will change in the following
examples)

– ♦�¬hasNext

The obtained controller is shown in Figure 1. The con-
troller is initially in q0, where it remains as long as hasNext
is observed, and moves to q1 (where it remains forever) as
soon as ¬hasNext is observed. At state q0, if not at the end
of list, the controller prescribes n(ext), and s(top) otherwise;
at state q1, s(top) is unconditionally prescribed. It is easy to
see that all cells have been visited iff the controller is at q1.
Notice that although this particular controller uses memory
(it has two states), this is not required: it could use just one
state and prescribe n when hasNext and s otherwise.

The formulas define a sound observation abstraction, and
hence every controller solving the LTL synthesis problem
for the formula D ∧ ((E ∧ F ) ⊃ G) also solves QT .

Let us give an idea of how one can check for soundness
(see Remark 1). Let us suppose that we formalize a list as
the usual abstract data type4 that has a single variable pos
varying over the positions of the list, and operations n(ext)
and s(top). This formalization induces a generalized plan-
ning problem QT obtained by instantiating the data type
in all possible ways. In particular, the i-th planning prob-
lem Pi in QT has observations ¬hasNext, actions n and s,
states in {1, 2, . . . , i}× {done,¬done}, and the initial state
is (1,¬done); in addition, if we refer to the first component
of the state as its position, the goal states have position i, the
observation function outputs ¬hasNext iff the position is i,
action s is always available, action n is available in all states
of the form (j,¬done) where j < i, and the transitions are
n(j,¬done) = (j + 1,¬done), and s(j, L) = (j, done) for
L ∈ {done,¬done}.

Now, one can formally show that the execution assump-
tions and goal formulas given above are sound for QT . In
this case, it is easy to see: the execution assumption is true
in every trajectory of Pi; and every trajectory in Pi that sat-
isfies the goal constraint reaches the goal state.

4For this example, we can ignore the values in the cells of the
list. In later examples, we use such values.

q0 q1
¬hasNext/s

hasNext/n >/s

Figure 1: Controller for traversing a singly-linked list.

q1 q0 q2 q3
hn/n hp/p

¬hp ∧ ¬hn/s

hp ∧ hn/n

hp ∧ ¬hn/s

hp ∧ hn/p

¬hp ∧ hn/s

>/s

Figure 2: Controller for traversing a doubly-linked list. The con-
troller produced by Strix has non-realizable edges; e.g., there is an
edge from the initial state (q0) on observation hp ∧ hn. Likewise,
the controller may have states that are only reachable through non-
realizable edges. For clarity, such edges and states are not shown
in this figure nor the following figures.

Traversing a Doubly-Linked List. This is analogous to
list traversal except that the list is doubly-linked, i.e., the
cursor can move to the n(ext) or p(revious) cell (if present).
The observations hn (has next) and hp (has previous) model
the fact that a cell has a successor/previous cell. Actions and
observations in the generalized problem QT and the LTL
formulas modeling the abstraction are as follows:

• Observations: hn, hp (cell pointed at by cursor has previ-
ous or successor)

• Actions: n(ext), p(revious), s(top)
• Formula D (preconditions, non-concurrent actions, and

stop action):

– �(n→ hn) ∧ �(p→ hp)
– �(n⊕ p⊕ s)
– �(s→ ◦s)
• Formula E (initial conditions, effects, and frame):

– ¬hp ∨ ¬hn
– �(n→ ◦hp) ∧ �(p→ ◦hn)
– �(s→ PERSISTS(hp, hn))

• Formula F (temporal assumptions):

– (�♦n ∧ ♦�¬p)→ ♦¬hn
– (�♦p ∧ ♦�¬n)→ ♦¬hp
• Formula G (goals): visit all cells once, i.e., reach other

end and never invert direction

– (¬hp→ ♦�¬hn) ∧ (¬hn→ ♦�¬hp)
– �((p→ ◦¬n) ∧ (n→ ◦¬p))
The controller is shown in Figure 2. At state q0 no previ-

ous observations have been collected nor actions have been
performed; at q1 (resp. q2) the cursor has moved from its
initial position and has all its previous (resp. successor) cells
visited; q3 stands for cursor at an extreme position with all
cells visited. The prescribed actions are as follow: if the cur-
sor is on the first cell, move to next cell until the end of the
list (path q0 → q1 · · · q1 → q3); if the cursor starts on the
last cell and not on the first, then move to previous cell until

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

157



the beginning of the list (path q0 → q2 · · · q2 → q3); if the
list has only one cell then stop (path q0 → q3); once at q3,
stop forever.

Here, contrarily to the singly-linked case, memory is re-
quired. When the cursor is not at either extreme, whether
all previous or successor cells have been visited depends
on “how” the current position was reached. If it was done
starting from the end (resp. beginning) and performing only
p(revious) (resp. n(ext)) then all previous (resp. successor)
cells have already been visited, thus the cursor must move to
previous (resp. next) cell. To distinguish between these two
situations, the controller needs states q1 and q2, as the sole
information “in the middle of list” does not suffice to make
the correct decision.

Formulas can be shown to be sound in essentially the
same way as for the singly-linked list.

Traversing a Tree. Tree traversal requires visiting all
nodes in a finite tree exactly once, starting from the root. We
assume a memory where nodes to be visited can be stored
and retrieved, initially only containing the root node.

• Observations: em(pty memory), ha(s children) (current
node’s children have not been put in memory)

• Actions: e(xtract a node from memory, for visiting), p(ut
all children of current node into memory), s(top)

• Formula D (preconditions, non-concurrent actions, and
stop action):

– �(e→ ¬em) ∧ �(p→ ha)
– �(e⊕ p⊕ s)
– �(s→ ◦s)

• Formula E (initial conditions, effects, and frame):

– ¬em
– �(p→ ◦(¬em ∧ ¬ha))
– �(s→ PERSISTS(em, ha))

• Formula F (temporal assumption):

– �♦e→ ♦(em ∧ ¬ha)

• Formula G (goals): visit all nodes once, i.e., end up with
empty memory and no children to visit and never extract
until all children of current node are put in memory

– ♦�(em ∧ ¬ha)
– �(ha→ (¬eU p))
We discuss formulas F andG. Formula F says that if one

keeps extracting nodes from memory, a point will be even-
tually reached where the current extracted node has no chil-
dren and the memory is empty. F is sound because action
p, which has precondition ha and puts all the current node’s
children in memory, cannot be executed forever in a finite
tree. The last formula in G says that children nodes must
always be visited, i.e., that the children of the current node
must be put in memory before other nodes are extracted.

The controller is shown in Figure 3. State q0 models ab-
sence of previous observations and actions; in q1 a node has
just been extracted and its children are not in memory; in q2
all the current node’s children are in memory, and memory
is nonempty; in q3 the memory is empty and all the current

q0 q1

q2

q3
¬em ∧ ¬ha/e

¬em
∧ h

a/
p

¬em ∧ ¬ha/e

h
a
/
p

em ∧ ¬ha/s

¬
em

∧
¬
h
a
/
e >/s

Figure 3: Controller for tree traversal.

node’s children are in memory, i.e., the node is leaf. The
controller prescribes: to extract a node whenever memory is
nonempty and all the current node’s children are in memory
(paths q0 → q1, q1 → q1, and q2 → q1); put all the current
node’s children in memory whenever they are not (q0 → q2,
q1 → q2); stop on empty memory and current node with no
children (q1 → q3).

Traversing a Graph. Graph traversal requires all the
nodes of a finite graph to be visited exactly once. We assume
that the graph is connected. Also in this case, a memory is
available to store nodes to visit. We assume that when nodes
are put in memory, they are simultaneously marked, which
is the only way to mark nodes. The abstraction for graph
traversal is essentially the same as for trees, except:

• Observation and action ha(s children) and p(ut children)
are replaced by ha(s unmarked) and p(ut unmarked) re-
spectively. The latter puts the unmarked neighbors in
memory while marking them.

• The temporal assumption formula F is changed to:

– (�♦e ∧ ♦�¬p)→ ♦� em
– �♦p→ ♦�¬ha
• Formulas D, E, and G are as for tree traversal, except

for renaming of ha(s children) to ha(s unmarked), and
p(ut children) to p(ut unmarked).

The first temporal assumption formula says that if one
keeps marking (unmarked) nodes, at some point there will
be no unmarked nodes left, as the graph is finite. The second
temporal assumption formula says instead that the memory
will eventually become empty if one keeps extracting nodes
from memory and at some point stops putting nodes there.

The obtained controller is essentially identical to the con-
troller for tree traversal depicted in Fig. 3, except that
the symbols ha(s children) and p(ut children) are replaced
by ha(s unmarked) (neighbors) and p(ut unmarked) (neigh-
bors) respectively. Soundness can be easily checked.

Minimum of a List. The task is to return in a register the
minimum element of a finite, singly-linked list. We assume
the cursor starts on the first cell. A register can be updated
with the value stored in the current cell, and one can check
whether the value in the current cell is less than the value in
the register. The abstraction is a slight change from the one
used for singly-linked list traversal:
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q0 q1 q2

hasNext ∧ ¬lt/n

hasNext ∧ lt/u

¬hasNext ∧ lt/u, hasNext ∧ ¬lt/s

hasNext/n

¬hasNext/s

>/s

Figure 4: Controller for finding minimum in a list.

• Observations: hasNext (as in list), lt (value stored in
pointed cell is less than value in register)

• Actions: n(ext) and s(top) as in list, plus u(pdate register
with value in pointed cell)

• Formula D (preconditions, non-concurrent actions, and
stop action): as in list traversal, but with �(n⊕s) replaced
by �(n⊕ u⊕ s)

• Formula E (initial conditions, effects, and frame):
– �(u→ (◦¬lt ∧ PERSISTS(hasNext)))
– �(s→ PERSISTS(hasNext, lt))

• Formula F (temporal assumptions): as in singly-linked
list

• FormulaG (goals): as singly-linked list traversal, plus up-
date register iff current value is smaller than register
– �(u↔ lt)

The key formula is G: it requires the value in the register
to be updated iff it is greater than the value in the current cell.
The controller is shown in Figure 4. It prescribes moving
to next cell until a cell with a value less than the value in
the register is pointed at (paths q0 → q0, q1 → q0) or the
end of the list is reached. In the former case, even if the
end is reached, an update action is prescribed (paths q0 →
q1, q0 → q2), in the latter case, a stop action is performed
forever (q0 → q2, q2 → q2).

Membership in a Tree. This task requires checking
whether a finite tree contains some node with a value equal
to that stored in a register. We assume the same data struc-
ture as for tree traversal, extended with a register for storing
the value to be found. The goal is to stop the search when the
label for the current node matches the value in the register
or, if there is no such node, to carry out a full traversal. The
abstraction is obtained from small changes in the abstraction
for tree traversal:

• Observations: em(pty) and ha(s children) as in tree,
eq(ual) (pointed node has label matching searched value)
• Actions: e(xtract), p(ut children) and s(top) as in tree

traversal
• Formula D (preconditions, non-concurrent actions, and

stop action): as in tree traversal
• Formula E (initial conditions, effects, and frame): as in

tree traversal except for s
– �(s→ PERSISTS(em, ha, eq))

• Formula F (temporal assumptions): as in tree traversal
• Formula G (goals): search value, i.e., same as tree traver-

sal, but stop when the value is found
– ♦�eq ∨ ♦�(em ∧ ¬ha)

– �((ha ∧ ¬eq)→ (¬eU p))
– �(eq → s)

The first goal formula states that the traversal should pro-
ceed until the element sought is found or there are no more
nodes. The second says that until the sought element is
found, no children should be left unexplored. The third says
that the traversal stops when the element is found. The ob-
tained controller is shown in Fig. 5.

Swamp Crossing. This is a classical programming exer-
cise about recursion. A swamp is represented as a matrix
containing either water or land in its cells. The task is to
find a path of (horizontally or right-diagonally) adjacent land
cells from a leftmost (land) cell to a rightmost cell. In our
specification, only cells with land are explicitly labelled, and
water is assumed in all other cells. In this variant, we focus
only on checking whether the rightmost column is reach-
able, without actually constructing (nor returning) the path
found. The abstraction we propose is conceptually similar
to that used for tree membership, once matrix cells are inter-
preted as nodes and the neighbor relationship holds (asym-
metrically) between a cell and those right-adjacent to it. We
also model the presence of water or land in each cell and as-
sume that the memory initially contains all cells (nodes) of
the leftmost column:

• Observations: em(pty memory), ha(s neighbors) (current
node has some neighbor not put in memory), r(ightmost)
(current node belongs to rightmost column), l(and) (cur-
rent node is land);

• Actions: e(xtract a node from memory, for visiting), p(ut
all neighbors of current node into memory, if not already
there), s(top)
• Formula D (preconditions, non-concurrent actions, and

stop action):
– �(e→ ¬em) ∧ �(p→ ha)
– �(e⊕ p⊕ s)
– �(s→ ◦s)
• Formula E (initial conditions, effects, and frame):

– ¬em
– �(p→ ◦(¬em ∧ ¬ha))
– �(s→ PERSISTS(em, ha, r, l))

• Formula F (temporal assumptions): by continuously ex-
tracting nodes from memory, it eventually becomes empty
– �♦e→ ♦(em ∧ ¬ha)

• Formula G (goals): visit all reachable land nodes once,
until a rightmost land node (if any) is achieved:
– ♦�(r ∧ l) ∨ ♦�(em ∧ ¬ha)
– �((ha ∧ l ∧ ¬r)→ (¬eU p))
– �((r ∧ l)→ s)

Similarly to membership in a tree, the visit stops when a
rightmost land cell is achieved (last formula). However, only
neighbors of land nodes are put in memory for future visit-
ing (second formula) to guarantee that the cells “touched”
when moving are all made of land. Notice also that we do
not explicitly prevent visiting cells more than once since the
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q1 q2 q3

q0¬ha ∧ ¬eq/e

ha ∧ ¬eq/p eq
/s

¬em ∧ ¬ha ∧ ¬eq/e

ha ∧ ¬eq/p

eq ∨ (em ∧ ¬ha)/s

¬em ∧ ¬ha ∧ ¬eq/e eq/s

>/s

Figure 5: Controller for finding an element in a tree.

graph induced by the matrix is a acyclic. This however could
have been easily prevented by enforcing a marking mecha-
nism similar to the one used for graph traversal which only
requires a different concrete instantiation of the actions ex-
tract and put. The obtained controller has a structure similar
to the controller for finding an element in a tree, cf. Fig. 5.

6 Conclusions
We addressed the problem of automatically constructing a
concrete program in the form of a finite-state controller
from a high-level LTL specification that describes the pro-
gramming environment and the requirements on the con-
troller. The former describes the transitional and temporal
assumptions of the data structures, initial conditions, and
non-concurrency of operations, while the requirements on
the controller identify successful executions, i.e., executions
that solve the programming task. Our methods solve two
difficult obstacles associated with programming synthesis
tasks. First, by considering the observation projection of
the generalized planning problem Q paired with the transi-
tional and temporal assumptions, the synthesis task is for-
mulated over a finite state space rather than over an infinite
state space. Second, by using goal formulas, we circumvent
the need to formalize the programming task in terms of map-
pings from inputs to outputs, a formalization that is typically
complex and uses higher-order logics or operational models.

The whole approach has been implemented and tested
by students as part of the graduate course “Elective in AI:
Reasoning Agents” at University of Rome “La Sapienza”.
The implementation takes the input specification, runs the
LTL solver and translates the output controller into a Python
program. The implementation has been used successfully
to solve several programming problems, including: find
min/max of a list, copy even numbers into another list, sum
the positive numbers of a list, bubble sort, find an element in
a tree, and a robot navigation task inside a matrix.

Other approaches oriented towards automated program-
ming have been proposed previously, where planners have
been used to derive general programs and controllers, but
from examples (Bonet, Palacios, and Geffner 2009; Aguas,
Celorrio, and Jonsson 2019) and thus offer no guarantees on
the generality and correctness of the resulting programs. On
the other hand, our approach is deductive and thus guaran-
tees that any solution for the observable abstraction QA is
indeed a solution for the programming task.

While a number of FOND planners exist that deal with
different LTL fragments (Patrizi, Lipovetzky, and Geffner
2013; Camacho et al. 2017; Camacho et al. 2018), none

seem to correctly handle the fragment needed here. We have
used general LTL tools to cope with the unrestricted tempo-
ral assumptions. From the planning perspective, the chal-
lenge is to replace the LTL tools, which will not scale in the
presence of many observations, by scalable FOND planners.

From a general perspective it is interesting to investigate
how far the approach can be pushed. E.g., one could study
how different specifications can be combined in a modular
way, or whether (some) forms of recursive procedures can
be handled.
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