
Explanatory Diagnosis of Discrete-Event Systems with
Temporal Information and Smart Knowledge-Compilation

Nicola Bertoglio1 , Gianfranco Lamperti1 , Marina Zanella1 , Xiangfu Zhao2

1Department of Information Engineering, University of Brescia, Via Branze 38, Brescia 25123, Italy
2School of Computer and Control Engineering, Yantai University, 30, Qingquan RD, Laishan District,

Yantai 264005, China
{n.bertoglio001,gianfranco.lamperti,marina.zanella}@unibs.it, xiangfuzhao@gmail.com

Abstract
Model-based diagnosis is typically set-oriented. In static sys-
tems, such as combinational circuits, a candidate (or diagno-
sis) is a set of faulty components that explains a set of obser-
vations. In discrete-event systems (DESs), a candidate is a set
of faulty events occurring in a sequence of state changes that
conforms with a sequence of observations. Invariably, a can-
didate is a set. This set-oriented perspective makes diagnosis
of DESs narrow in explainability, owing to the lack of any
temporal knowledge relevant to the faults within a candidate,
along with the inability to discriminate between single and
multiple occurrences of the same fault. Embedding temporal
knowledge in a candidate, such as the relative temporal or-
dering of faults and the multiplicity of the same fault, may be
essential for critical decision making. To favor explainabil-
ity, the notions of temporal fault, explanation, and explainer
are introduced in diagnosis of DESs. The explanation en-
gine reacts to a given sequence of observations by generating
and refining in real-time a sequence of regular expressions,
where the language of each expression is a set of temporal
faults. Moreover, to avoid total knowledge compilation, the
explainer can be generated incrementally either offline, based
on meaningful behavioral scenarios, or online, when being
operated in solving specific diagnosis problems.

1 Introduction
Model-based diagnosis (Reiter 1987; Hamscher, Console,
and de Kleer 1992) exploits the model of a system in or-
der to find the causes of its abnormal behavior, based on
some observations. For diagnosing a dynamical system
(Struss 1997), a discrete-event system (DES) model can be
adopted (Cassandras and Lafortune 2008), this being ei-
ther a Petri net (Basile 2014; Cong et al. 2018) or a net
of communicating finite automata (Brand and Zafiropulo
1983), an automaton for each component, like in the cur-
rent paper. Although an automaton possibly represents just
the nominal behavior of a DES component (Pencolé et al.
2017), usually each state transition is either normal or ab-
normal, as in the seminal work by (Sampath et al. 1995;
Sampath et al. 1996). The input of the diagnosis task is a
sequence of temporally ordered observations, called a tem-
poral observation. The output is a set of candidates, with
each candidate being a set of faults, where a fault is asso-
ciated with an abnormal state transition. Diagnosing a DES
becomes a form of abductive reasoning (McIlraith 1998),

inasmuch the candidates are generated based on the trajec-
tories (sequences of state transitions) of the DES that en-
tail the temporal observation. The approach in (Sampath et
al. 1995) performs the abduction offline, thus compiling the
DES models into a diagnoser, a data structure that is con-
sulted online in order to produce a new set of candidates
upon perceiving each observation (monitoring-based diag-
nosis). In the active-system approach (Lamperti, Zanella,
and Zhao 2018a), instead, the abduction is performed on-
line, a possibly costly operation that, however, being driven
by the temporal observation, can focus on the trajectories
that imply this sequence only. The diagnosis output is the
set of candidates relevant to the (possibly infinite) set of tra-
jectories of the DES that produce the temporal observation.
Since the domain of faults is finite, both the candidates and
the diagnosis output are finite and bounded. Still, in both
the diagnoser approach and the active-system approach, a
candidate is a set of faults. Consequently, the diagnosis out-
put is devoid of any temporal feature while in the real world
faults occur in a specific temporal order. One may argue that,
since a new set of candidates is output upon the reception of
a new observation, it is possible to ascertain whether some
additional faults have occurred with respect to the previous
observation. However, one cannot ascertain whether a fault
occurred previously has occurred again, in other words, no
information about intermittent faults is provided.

In a perspective of explainable diagnosis and, more gener-
ally, of explainable AI, in this paper, a candidate is not a set
of faults, instead it is a temporal fault, namely the (possibly
unbounded) sequence of faults relevant to a trajectory that
produces the temporal observation. Therefore, the diagnosis
output is the (possibly infinite) set of temporal faults rele-
vant to the (possibly infinite) set of trajectories of the DES
that imply the temporal observation (received so far). Since
the diagnosis output is a regular language over the alpha-
bet of faults, it can be represented by a regular expression.
The temporal knowledge embedded in temporal faults can
support the diagnostician in making critical decisions to per-
form suitable repair actions. This novel characterization of
the diagnosis output is the first contribution of the paper.

The second one is a theoretical framework for defining the
task that generates such an output. A data structure compiled
offline, called explainer, which enables the online efficient
computation of the new diagnosis output is proposed. The

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

130

Component transition Description

v1 = 〈closed , (op, ∅), open〉 The valve reacts to the open event by opening
v2 = 〈open, (cl , ∅), closed〉 The valve reacts to the close event by closing
v3 = 〈closed , (op, ∅), closed〉 The valve does not react to the open event and remains closed
v4 = 〈open, (cl , ∅), open〉 The valve does not react to the close event and remains open
v5 = 〈closed , (cl , ∅), closed〉 The valve reacts to the close event by remaining closed
v6 = 〈open, (op, ∅), open〉 The valve reacts to the open event by remaining open
v7 = 〈closed , (cl , ∅), open〉 The valve reacts to the close event by opening
v8 = 〈open, (op, ∅), closed〉 The valve reacts to the open event by closing

s1 = 〈off , (high, {op}), on〉 The sensor detects high temperature and generates the open event
s2 = 〈on, (low , {cl}), off 〉 The sensor detects low temperature and generates the close event
s3 = 〈off , (high, {cl}, off 〉 The sensor detects high temperature, yet generates the close event
s4 = 〈on, (low , {op}), on〉 The sensor detects low temperature, yet generates the open event

Figure 1: DES P (left), details of component transitions (center), and behavioral space P∗ (right).

explainer acts somewhat as a counterpoint to Sampath’s di-
agnoser in set-oriented diagnosis of DESs.

The third contribution of the paper is an algorithm, called
Explanation Engine, which, every time a new observation
has been perceived, is able not only to generate an updated
set of candidates but also to prune the previously output can-
didates that are no longer consistent with the temporal ob-
servation. This progressive refinement of results is key to
enhancing the explainability of monitoring-based diagnosis.

Since the generation of the explainer requires total knowl-
edge compilation, which turns out to be impractical in real
applications because of the exponential explosion of the
number of states, a fourth contribution is a technique for
building a partial explainer upfront, which can be subse-
quently extended based on either meaningful behavioral sce-
narios of the DES or new diagnosis problems that are being
solved over time by a Smart Explanation Engine.

2 DES Modeling
A DESX is a network of components, where the behavior of
each component is modeled as a communicating automaton.
A component is endowed with input and output pins, where
each output pin is connected with an input pin of another
component by a link.

A component transition can be triggered either by an ex-
ternal event coming from the outside of X or by an internal
event coming from another component in X . When an event
occurs, a component of the DES may react by performing
a transition. When performing a transition, a component
consumes the triggering (input) event and possibly generates
new events on its output pins, which are bound to trigger the
transitions of other components. A transition generating an
event on an output pin can occur only if this pin is not occu-
pied by another event.

Assuming that only one component transition at a time
can occur, the process that moves a DES from the initial
state can be represented by a sequence of component tran-
sitions, called a trajectory of X . A contiguous subsequence
of a trajectory is a trajectory segment. At the occurrence of
a component transition, X changes state, with a state x of X
being a pair (C,L), where C is the array of the current com-
ponent states and L the array of the (possibly empty) current
events placed in links. The (possibly infinite) set of trajec-

tories of X is specified by a deterministic finite automaton
(DFA), the (behavioral) space of X ,

X ∗ = (Σ, X, τ, x0) (1)

where Σ (the alphabet) is the set of component transitions,
X is the set of states, τ is the deterministic transition func-
tion mapping a state and a component transition into a new
state, τ : X × Σ 7→ X , and x0 is the initial state. Each tra-
jectory T is a string of the language of X ∗, hence we write
T ∈ X ∗.

For diagnosis purposes, the model of X needs to be en-
riched by a mapping table. Let T be the set of component
transitions inX , O a finite set of observations, and F a finite
set of faults. The mapping table µ of X is a function

µ(X) : T 7→ (O ∪ {ε})× (F ∪ {ε})

where ε is the empty symbol. The table µ(X) can be rep-
resented as a finite set of triples (t, o, f), where t ∈ T,
o ∈ O ∪ {ε}, and f ∈ F ∪ {ε}. The triple (t, o, f) de-
fines the observability and normality of t: if o 6= ε, then t is
observable, else t is unobservable; likewise, if f 6= ε, then
t is faulty, else t is normal. Based on µ(X), each trajectory
T in X ∗ can be associated with a temporal observation, this
being the sequence of observations involved in T , namely

Obs(T) = [o | t ∈ T, (t, o, f) ∈ µ(X), o 6= ε] . (2)

The set of temporal observations relevant to all the trajecto-
ries in X ∗ is the observation language of X ∗, namely

OBS (X ∗) = {Obs(T) | T ∈ X ∗}. (3)

In the literature, a trajectory T is also associated with a di-
agnosis, namely the set of faults involved in T . As such,
a diagnosis does not indicate the temporal relationships be-
tween faults, nor does it account for multiple occurrences of
the same fault. On the other hand, treating a diagnosis as
a set of faults guarantees that the domain of possible diag-
noses is finite, being bounded by the powerset of the domain
of faults. In contrast with this classical perspective, we in-
troduce the notion of a temporal fault.
Definition 1 (temporal fault). Let T be a trajectory of a
DES. The temporal fault of T is the sequence of faults

Flt(T) = [f | t ∈ T, (t, o, f) ∈ µ(X), f 6= ε]. (4)

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

131

t o f

s1 sen ε
s2 sen ε
s3 ε α1

s4 ε α2

v1 val ε
v2 val ε
v3 ε β1

v4 ε β2

v5 val ε
v6 val ε
v7 val β3

v8 val β4

o Observation description

sen The sensor s performs an action
val The valve v performs an action

f Fault description

α1 s sends the cl command instead of op
α2 s sends the op command instead of cl
β1 v remains closed on the op command
β2 v remains open on the cl command
β3 v opens on the cl command
β4 v closes on the op command

Figure 2: Mapping table µ(P) (left) and description (right).

Since the length of T is in general unbounded, the length of
both Obs(T) and Flt(T) is in general unbounded. A con-
tiguous subsequence of a temporal fault is called a temporal-
fault segment.

Example 1 (DES). Centered on the left side of Fig. 1 is
a DES called P (protection), which includes two compo-
nents, a (temperature) sensor s and a valve v, and one link
connecting the (single) output pin of s with the (single) in-
put pin of v. The protection is designed to control a cool-
ing system. When the temperature becomes high, the sensor
commands the valve to open in order to let the cooling fluid
to flow. Vice versa, when the temperature returns to nor-
mal, the sensor commands the valve to close. The model
of s, outlined under P , involves two states (denoted by cir-
cles) and four transitions (denoted by arcs). The model of
v is shown above P . Each component transition t from
a state p to a state p′, triggered by an input event e, and
generating a set of output events E, is denoted by the an-
gled triple t = 〈p, (e, E), p′〉, as detailed in the table within
Fig. 1. The space of P , namely P∗, is depicted on the
right side of Fig. 1, where each state is identified by a triple
(s̄, v̄, e), with s̄ being the state of the sensor, v̄ the state of
the valve, and e the internal event in the link (ε means no
event). For simple referencing, the states of P∗ are renamed
0 · · · 7, where 0 is the initial state. Owing to cycles, the set
of possible trajectories of P is infinite, one of them being
T = [s3, v5, s1, v3, s4, v3, s2, v5]. The mapping table µ(P)
is shown on the left side of Fig. 2, with observations and
faults being described on the right side. Only one obser-
vation is provided for both the sensor and the valve, namely
sen and val , respectively, each being associated with several
(still not all) transitions. Based on µ(P) and the trajectory T
defined above, we have Obs(T) = [val , sen, sen, val] and
Flt(T) = [α1, β1, α2, β1]. In a set-oriented perspective, the
diagnosis of T would be the set {α1, α2, β1}, where neither
the temporal ordering of faults nor the double occurrence of
β1 is contemplated.

3 Explanation and Explainability
The essential goal in diagnosing a DES is generating the set
of candidates relevant to a temporal observation O. In this
paper, in contrast with the classical set-oriented perspective,
a candidate is a temporal fault that is produced by a trajec-

tory that entails O. The (possibly infinite) set of candidates
is the explanation of O, as formalized in Def. 2.
Definition 2 (explanation). Let O = [o1, . . . , on] be a tem-
poral observation of X and T a trajectory of X such that
Obs(T) = O. Let T[i], i ∈ [0 .. n], denote either T , if i = n,
or the prefix of T up to the transition preceding the (i+1)-th
observable transition in T , if 0 ≤ i < n. The explanation of
O is a sequence

E(O) = [F0,F1, . . . ,Fn] (5)

where each Fi, i ∈ [0 .. n], is the minimal (possibly un-
bounded) set of temporal faults defined as follows:

T ∈ X ∗,Obs(T) = O, ∀i ∈ [0 .. n]
(
Fi ⊇

{
Flt

(
T[i]

)})
. (6)

Example 2 (explanation). Let O = [val , sen, sen] be a
temporal observation of the DES P defined in Example 1.
Based on the space P∗ in Fig. 1 and the mapping table
µ(P) in Fig. 2, the language of the trajectories generat-
ing O can be represented by a regular expression1, namely
s3v5s1v3(s4v3)∗s2. Hence, according to Def. 2,

E(O) = [α1, α1, α1β1(α2β1)∗, α1β1(α2β1)∗].

Each of the four sets of temporal faults in E(O) is repre-
sented by a regular expression. In a classical set-oriented
perspective, the set of candidates corresponding to the fourth
regular expression (which equals the third one) would be
{{α1, β1}, {α1, α2, β1}}, in which case the diagnostician
knows that both fault α1 and β1 have certainly occurred,
whereas the occurrence of fault α2 is uncertain; still, he has
no hint about how frequently such faults have manifested
themselves and in which temporal order. If, instead, the reg-
ular expression is given, the diagnostician knows not only
that both faults α1 and β1 have certainly occurred, but that
α1 has occurred just once and it was the first, while β1 was
the second. In addition, he knows that, if α2 has occurred,
it has occurred after them, and it may have occurred several
times, every time being followed by β1. These details may
be essential to explain what has happened inside the system
in order to make critical decisions for suitable recovery ac-
tions.
It can be proven that the sets of temporal faults in eqn. (5)
are invariably regular languages (like in Example 2). This
allows a (possibly infinite) set of temporal faults to be al-
ways represented by a (finite) regular expression.

Depending on the degree of observability, a set of tem-
poral faults in an explanation can be either finite or infinite.
In this respect, the notion of explainability formalized below
provides a classification of DESs.

1A regular expression is defined inductively over an alphabet
Σ as follows. The empty symbol ε and every a ∈ Σ is a regular
expression. If x and y are regular expressions, then the follow-
ings are regular expressions: (x) (parentheses may be used), x | y
(alternative), xy (concatenation), x? (optionality), x∗ (repetition
zero or more times), and x+ (repetition one or more times). When
parentheses are missing, the concatenation has precedence over the
alternative, while optionality and repetition have the highest prece-
dence; for example, ab∗ | cd? denotes (a(b∗)) | (c(d?)) (Hopcroft,
Motwani, and Ullman 2006).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

132

Definition 3 (explainability). Let O = [o1, . . . , on] be a
generic temporal observation of a DES X and

E(O) = [F0,F1, . . . ,Fn]

the explanation of O. If, for each O and for each language
Fi, i < n, Fi is finite, then X is enumerably explainable.2 If
X is enumerably explainable and, more specifically, for each
O and for each languageFi, i < n,Fi is a singleton, thenX
is strongly explainable. If X is not enumerably explainable
(and hence, even more so, not strongly explainable), then X
is weakly explainable.

From Def. 3, we can infer that a DES is weakly explain-
able in case its (behavioral) space contains unobservable cy-
cles that include some faulty transition(s). This feature of the
space can give rise to highly uncertain online situations: for
some given temporal observations, it is impossible to know
whether some faults have occurred and how many times they
have occurred. As far as enumerably explainable DESs are
concerned, the number of temporal faults relevant to each
trajectory that entails a given temporal observation up to the
last but one perceived observation is finite. The number of
trajectories that entail the whole temporal observation per-
ceived up to now may instead be unbounded, hence the latest
set of temporal faults of the explanation is unbounded too.
Once a new observation has been perceived, however, this
set becomes finite.

The reason for the enumerable explainability not enforc-
ing any enumerability constraint on the latest set of tempo-
ral faults in the explanation is that this set may be unbound
because it includes not only the trajectories whose last tran-
sition is the one generating the latest received observation
but also all the trajectories where this transition is followed
by unobservable ones, several of which may be inconsistent
with the next observation. Enumerable explainability does
not guarantee that all the sets of temporal faults but the latest
one are uncertainty-free; in fact, every set that includes more
than one temporal fault is uncertain as we do not know the
sequence of faults actually occurred. Hence, only strong ex-
plainability guarantees full knowledge of the faults occurred
up to the last but one perceived observation.
Example 3 (explainability). Based on E(O) in Example 2,
we conclude that P is weakly explainable, as the regular
language denoted by F2 = α1β1(α2β1)∗ is infinite owing
to the unbounded repetition (α2β1)∗.

In order to support the efficient generation of the explana-
tion of any temporal observation, a data structure called an
explainer is introduced in the next section.

4 Total Knowledge Compilation
The explainer of a DES X is a nondeterministic finite au-
tomaton (NFA) resulting from the total compilation of X .
Roughly, it is a transformation of the space X ∗ extended
with explicit information on faults. The alphabet of the ex-
plainer is a set of triples (o,L, f), where o is an observation
of X , L is a regular language on the faults of X , and f is a

2No constraint is required for Fn; still, when O is extended to
O′ by on+1, Fn is expected to become finite in O′.

Figure 3: Genesis of the fault space P∗1 (shaded on the right).

(possibly empty) fault. Each state of the explainer (namely
a fault space) embodies a sort of local explanation defined
by regular languages (in fact, regular expressions) on faults.
Definition 4 (fault space). Let X ∗ be the space of a DES X
having mapping table µ(X), F the set of faults of X , and x̄
a state in X ∗. The fault space of x̄ is an NFA

X ∗x̄ = (Σ, X, τ, x0) (7)

where Σ = F ∪ {ε} is the alphabet, X is the subset of the
states ofX ∗ that are reachable from x̄ by unobservable tran-
sitions, x0 = x̄ is the initial state, and τ : X × Σ 7→ 2X

is the transition function, where 〈x1, f, x2〉 is an arc in τ iff
〈x1, t, x2〉 is a transition in X ∗ and (t, o, f) ∈ µ(X), with
o = ε. Each state x ∈ X is marked with the regular lan-
guage of the temporal-fault segments of the trajectory seg-
ments in X ∗ from x̄ to x, denoted L(x).

Example 4 (fault space). With reference to the DES P in-
troduced in Example 1, shown in Fig. 3 is the genesis of the
fault space P∗1 based on Def. 4. The graph on the left rep-
resents the portion of the space P∗ that is reached by unob-
servable transitions starting from the state 1. Then, the iden-
tifiers of the transitions are replaced with the corresponding
faults, thereby obtaining the graph in the center. The actual
fault space is depicted on the right of Fig. 3, where states 1
and 4 are marked with regular expressions on faults.
The decoration of the states in the fault space in Fig. 3 can
be carried out by inspection of the NFA shown in the center
of the figure. What we need, however, is a general technique
allowing for the automatic decoration of the states within a
fault space. To this end, we have exploited and adapted the
algorithm proposed in (Brzozowski and McCluskey 1963)
in the context of sequential circuit state diagrams. Essen-
tially, this algorithm takes as input an NFA and generates
the regular expression of the language accepted by this NFA.
However, in a fault space, all states need to be marked with
the relevant regular expressions. Thus, we have extended the
algorithm to decorate all the states in one processing of the
NFA (rather than one processing for each state).
Definition 5 (explainer). Let X ∗ = (Σ, X, τ, x0) be the
space of X , O the set of observations of X , F the set of
faults of X , and L the set of regular languages on F ∪ {ε}.
The explainer of X is an NFA

X E = (Σ′, X ′, τ ′, x′0) (8)

where Σ′ ⊆ O×L× (F∪{ε}) is the alphabet, X ′ is the set
of states, where each state is a fault space of a specific state
of X ∗, x′0 = X ∗x0

is the initial state, and τ ′ is the (nondeter-
ministic) transition function,

τ ′ : (X ′ ×X)× Σ′ 7→ 2(X′×X),

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

133

Figure 4: Explainer of the DES P , namely PE .

where 〈(x′1, x1), (o,L(x1), f), (x′2, x2)〉 is an arc in τ ′ iff x1

is a state in x′1, 〈x1, t, x2〉 ∈ τ , (t, o, f) ∈ µ(X), o 6= ε, and
x′2 = X ∗x2

.

Example 5 (explainer). With reference to the DES P ,
shown in Fig. 4 is the explainer PE , where the states (fault
spaces) are renamed 0 · · · 7. Unlike component transitions
within fault spaces, which are represented with plain arcs,
the transitions between states of PE are depicted as dashed
arcs that are marked with the relevant triples.

A trajectory in X E is the sequence of triples (o,L, f) mark-
ing a contiguous sequence of transitions in X E starting from
the initial state. Likewise, the temporal observation of a tra-
jectory T in X E is defined as

Obs(T) = [o | (o,L, f) ∈ T]. (9)

The notion of the observation language of X defined in
eqn. (3) can be naturally extended to X E as follows:

OBS
(
X E

)
=

{
Obs(T) | T ∈ X E

}
. (10)

Proposition 1. The observation language of the explainer
of X equals the observation language of the space of X ,

OBS
(
X E

)
= OBS (X ∗). (11)

This can be proven easily by considering that each sequence
of observations generated by a trajectory in X E can be gen-
erated by a trajectory inX ∗ and vice versa. In fact, each state
in X E is a fault space, namely a subspace of X ∗ involving
unobservable trajectory segments.

Figure 5: Monitoring traceM([val , sen]) for the DES P .

5 Monitoring and Explanation Trace
Given an explainer X E , the explanation of a temporal obser-
vation O is generated by tracing O on X E , thereby yielding
a monitoring trace, as formalized below.

Definition 6 (monitoring trace). Let O = [o1, . . . , on] be a
temporal observation of X and X E = (Σ, X, τ, x0) the ex-
plainer of X . The monitoring trace of O is a directed graph

M(O) = (M,A, µ0) (12)

where M = {µ0, µ1, . . . , µn} is the set of nodes, A is the
set of arcs, and µ0 is the initial node. Each node µi ∈ M ,
i ∈ [0 .. n], is a subset of X , with µ0 = {x0}. Each µi 6=
µ0 contains the states of X E that are reached in X E by the
states in µi−1 via a transition marked with a triple where
the observation is oi. Each arc exiting a state x ∈ µi is
marked with a pair (L,L′), whereL andL′ are languages of
temporal-fault segments. There is an arc from a state x ∈ µi

to a state x′ ∈ µi+1, i ∈ [0 .. (n− 1)], marked with (L,L′),
iff there is a transition in X E from a space state in x to a
space state in x′ that is marked with (oi+1,L, f), whereas
L′ is defined as follows. Let R be either ε, when i = 0,
or (L′1|L′2| . . . |L′k), when i 6= 0, where (Lj ,L′j) is the pair
marking the j-th arc entering x ∈ µi, j ∈ [1 .. k]. Then,
L′ = RLf .

Example 6 (monitoring trace). LetO = [val , sen] be a tem-
poral observation of the DES P . The corresponding moni-
toring traceM(O) is outlined in Fig. 5.

The monitoring trace ofO allows for the distillation of an ex-
planation trace (formalized below), which turns out to equal
the explanation of O (Proposition 2).

Definition 7 (explanation trace). LetM(O) be a monitoring
trace with nodes µ0, µ1, . . . , µn. The explanation trace of
M(O) is a sequence

E(M(O)) = [L(µ0),L(µ1), . . . ,L(µn)] (13)

where L(µi), i ∈ [0 .. n], is a language of temporal faults
defined as follows. Let µi = {x1, . . . , xm}. Let xj ∈
µi. Let Lin(xj) be either ε, when i = 0, or the al-
ternative (L1|L2| . . . |Lm), when i 6= 0, where (L′k,Lk),
k ∈ [1 ..m], is the pair marking the k-th arc entering xj .
Let Lout(xj) be either (L′1|L′2| . . . |L′p), when i 6= n, where
(L′h,Lh), h ∈ [1 .. p], is the pair marking the h-th arc
exiting xj , or (L(xj1)|L(xj2)| . . . |L(xjr)), when i = n,
where xj1 , . . . , xjr are the space states in xj and L(xjv),
v ∈ [1 .. jr], is the language marking xjv . Then, L(µi) is
the alternative of pairwise concatenated languages

L(µi) = (Lin(x1)Lout(x1) | . . . | Lin(xm)Lout(xm)) .

Example 7 (explanation trace). With reference to the moni-
toring traceM(O) displayed in Fig. 5, withO = [val , sen],
the corresponding explanation trace is

E(M(O)) = [α1, (α1|α1β3(α1β2)∗), (α1((β1α2)∗|β1(α2β1)∗)|α1β3(α1β2)∗)]

which, by factorization of α1, can be rewritten as

E(M(O)) = [α1, α1(β3(α1β2)∗)?, α1(((β1α2)∗|β1(α2β1)∗)|β3(α1β2)∗)].

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

134

Proposition 2. Let M(O) be a monitoring trace. The ex-
planation trace ofM(O) equals the explanation of O,

E(M(O)) = E(O). (14)

Proof (sketch). Let O = [o1, . . . , on] be a temporal ob-
servation of a DES X . According to Def. 2, the explanation
E(O) is a sequence [F0, . . . ,Fn], where eachFi, i ∈ [0 .. n],
is a set of temporal faults generated by considering all the
trajectories T of X such that Obs(T) = O. Fi is composed
of the temporal faults Flt(T[i]), where, if i < n, T[i] is the
prefix of T up to the transition preceding the (i + 1)-th ob-
servable transition; otherwise, when i = n, T[i] = T .

There is an isomorphism between the trajectories T[i] and
the paths in M(O), including the transitions within the
nodes ofM(O), from the initial state of µ0 to a state in µi

that is either exited by an arc, when i < n, or any state in µi,
when i = n. In fact, each node µi ofM(O) is a fault space
(Def. 4), which involves the portion of X ∗ that is reachable
from the initial state of µi by unobservable transitions, with
such transitions being marked with the corresponding faults.

Let (L,L′) be the pair marking an arc inM(O) entering
the initial state x̄ of a state in µi. Then, L′ is the language
of the temporal faults relevant to any trajectory of X ending
in x̄. This can be proven by induction. According to Def. 6,
if the arc considered exits µ0, then L′ = Lf , where L is the
language of temporal faults of the unobservable trajectories
up to the state exited by the arc and f is the (possibly empty
fault) associated with the observable transition correspond-
ing to the arc. Hence, Lf is the language of the temporal
faults relevant to the trajectories up to the transition corre-
sponding to the arc. If this property holds for an arc entering
a state in µi, i ∈ [1 .. (n− 1)], then it holds for a succes-
sive arc entering a state in µi+1. In fact, based on Def. 6,
L′ = RLf , where R = (L′1|L′2| . . . |L′k), with (Lj ,L′j),
j ∈ [1 .. k], being the pair marking an arc inM(O) entering
a state in µi. Thus, R accounts for the temporal faults rele-
vant to the trajectories up to the initial state of the fault space
x in µi that is exited by the arc. Moreover, L accounts for
the temporal-fault segments of the trajectory segments from
the initial state of x to the state in x that is exited by the arc
(marked by L). Hence, L′ accounts for the temporal faults
of the trajectories up to the initial state of the state in µi+1

that is entered by the arc.
Let E(O) = [F0,F1, . . . ,Fn], and E(M(O)) = [L(µ0),

L(µ1), . . . ,L(µn)]. To prove eqn. (13), we have to show
thatFi = Li, i ∈ [0 .. n]. Based on Def. 7, L(µi) is the alter-
native of the concatenated languages Lin(x)Lout(x), where
x is a state in µi. Besides, if i > 0, then Lin(x) is the
alternative of the languages in second position within the
pairs marking the arcs entering x; otherwise, if i = 0, then
Lin(x) = ε. Thus, Lin(x) accounts for the temporal faults
relevant to the trajectories up to the arcs entering x. Sim-
ilarly, if i < n, then Lout(x) is the alternative of the lan-
guages in first position within the pairs marking the arcs ex-
iting x; otherwise, if i = n, then Lout(x) is the alternative of
the languages marking the states within x. Hence, Lout(x)
accounts for the temporal-fault segments relevant to the tra-
jectory segments within x starting in the initial state of x.
Hence, L(µi) is the language of temporal faults relevant to

the trajectories T[i] such that Obs(T) = O; in other words,
according to Def. 2, L(µi) = Fi. �

5.1 Explanation Engine
The notions introduced so far, including temporal fault, ex-
planation, and monitoring/explanation trace, all refer to a
temporal observation O composed of a sequence of obser-
vations, namely [o1, . . . , on]. However, the DES being mon-
itored generates one observation at a time, rather than in one
shot. Hence, the explanation engine (that is, the software
system required to explain the temporal observation) is ex-
pected to react to each new observation o by updating the
current explanation based on o.

Albeit the temporal observation grows monotonically, by
simple extension of the sequence of observations, the grow-
ing of the explanation turns out to be in general nonmono-
tonic. Specifically, if [F0,F1, . . . ,Fi] is the explanation
of the temporal observation [o1, . . . , oi], the explanation of
[o1, . . . , oi, oi+1] is not in general [F0,F1, . . . ,Fi,Fi+1],
but rather, in the worst case, [F ′0,F ′1, . . . ,F ′i ,Fi+1], where
F ′j ⊆ Fj , j ∈ [0 .. i]. More precisely, the languages that
need to be restricted are in a (possibly empty) suffix of
[F0,F1, . . . ,Fi].

But, what is the cause of this nonmonotonicity? Intu-
itively, the extension of O with a new observation o is
bound to make some trajectories, that were consistent with
O, no longer consistent with O′ = O ∪ [o]. Hence, ac-
cording to eqn. (6) in Def. 2, only the trajectories T where
Obs(T) = O′ are considered in defining each language
Fi within E(O′). The trajectories that cannot be extended
based on o need therefore to be discarded, as well their tem-
poral faults, thereby causing the possible restriction of the
languages Fi.

The pseudocode of the Explanation Engine is listed in Al-
gorithm 1 (lines 1–23). It takes as input the explainer X E ,
a temporal observation O of X , the monitoring traceM of
O, the explanation trace E ofM, and a new observation o.
It updates O,M, and E , thereby providing the explanation
of O extended with o. First, O, M, and E are extended
in lines 9–12. Then, the set X of states in µ (the last node
of M before the extension) that are not exited by any arc
is computed (line 13). If X is not empty, then a backward
pruning of M and E is carried out in lines 15–20. To this
end, each state x ∈ X is removed from µ, since x termi-
nates the trajectories that turn out to be inconsistent with the
new observation o. Hence, the arcs entering these states are
removed from M also (line 16), and L(µ) in E is updated
(line 17). Then, the pruning is propagated to the preced-
ing node (lines 18–19) until a node including no state to be
removed is found (X = ∅, line 20). Eventually, L(µ) is up-
dated in any case (line 22), as some arcs exiting this node
may have been cut.

Example 8 (explanation engine). Shown in Table 1 is the
output of the explanation engine for the temporal observa-
tion O = [val , sen, sen] of the DES P (cf. Example 2).
For each index i ∈ [0 .. 3] of O, the table shows O[i]

(the prefix of O up to the i-th observation), the monitor-
ing trace M(O[i]), and the explanation trace E(M(O[i])),

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

135

Algorithm 1 Explanation Engine

1: procedure EXPLANATION ENGINE(X E , O,M, E , o)
2: input X E : the explainer of X
3: O: a temporal observation of X
4: M: the monitoring trace of O
5: E : the explanation trace ofM
6: o: a newly-received observation of X
7: side effects: O,M, and E are updated based on o
8: begin
9: Extend O by the new observation o

10: Let µ denote the last node ofM (before the extension)
11: ExtendM by a node µ′ based on the new observation o
12: Extend E by L(µ′) based on Def. 7
13: X← the set of states in µ that are not exited by any arc
14: if X 6= ∅ then
15: repeat
16: Remove from µ the states in X and their entering arcs
17: Update L(µ) in E based on Def. 7
18: µ← the node preceding µ inM
19: X← the set of states in µ that are not exited by any arc
20: until X = ∅
21: end if
22: Update L(µ) in E based on Def. 7
23: end procedure

which equals the explanation E(O[i]) (cf. Proposition 2).
When no observation has been perceived yet (i = 0), we
have E(O[i]) = [α1?], which indicates that the fault α1 may
or may not have occurred. After the reception of the third
observation (sen), backward pruning is applied to M(O)
since no transition marked with a triple involving the obser-
vation sen exits the state 6 of the explainerPE . As expected,
the eventual explanation E(O) equals the explanation deter-
mined in Example 2 based on Def. 2.

6 Smart Knowledge Compilation
Although knowledge compilation is performed offline, as-
suming that the explainer is available in its entirety is im-
practical in real applications, because of the explosion of
the number of states involved. Hence, we propose a viable
approach called smart knowledge compilation, in which a
partial explainer is built upfront and subsequently extended
either offline, based on meaningful behavioral scenarios, or
when being operated online. Analogously, the construction
of the space X ∗ is impractical. Hence, hereafter, a notation
like 〈x, t, x′〉 ∈ X ∗ does not assume that X ∗ is available: it
is only a shorthand for stating that the component transition
t is triggerable at the state x of X .

Definition 8 (partial explainer). Let X E be the explainer of
X . A partial explainer of X , denoted X e, is a connected
subgraph of X E that includes the initial state of X E .

Example 9 (partial explainer). With reference to the ex-
plainer PE displayed in Fig. 4, a partial explainer Pe is
shown in Fig. 6. In particular,Pe is a prefix ofPE at distance
1, that is, the subgraph of PE that includes all the states and
transitions that can be reached (from the initial state) by one
(dashed) transition.

Figure 6: Partial explainer Pe, prefix of PE (distance = 1).

Once an initial partial explainer X e is somehow generated,
for instance a prefix of the (whole) explainer X E , it can be
upgraded in several ways. One such way is by exploiting
behavioral scenarios, which are particular evolutions of the
DES that are required to be explained efficiently.
Definition 9 (behavioral scenario). Let X be a DES and T
a subset of the component transitions in X . A behavioral
scenario of X is a pair S = (T,L), where L is a regular
language on T.
Example 10 (behavioral scenario). A scenario where the
only malfunction is the valve being stuck closed can be
defined as S = (T,L), where T = {s3, s4, v1, v2, v3, v4,
v7, v8} and L = v3v

+
3 (repetition of v3 at least twice).

To upgrade a partial explainer X e so that it embeds the set
of temporal observations generated by a scenario S (the ob-
servation language of S , namely OBS (S)), we need to syn-
chronize S with the behavior of X , as described below.
Definition 10 (abduction). Let S = (T,L) be a scenario
of X . The restriction of a trajectory T in X ∗ on T is the
sequence TT = [t | t ∈ T, t ∈ T]. The abduction of S , X ∗S ,
is a DFA whose language is the set {T | T ∈ X ∗, TT ∈ L}.
Intuitively, the abduction of a scenario S is a subspace of
X ∗ where each trajectory T conforms with one string of the
scenario, in the sense that the subsequence of the component
transitions in T that are in T is a string in L.
Example 11 (abduction). With reference to the behavioral
scenario S defined in Example 10, shown in Fig. 7 are the
DFA recognizing S (left) and the abductionP∗S (right). Each
state of P∗S is a pair (p, d), where p is a state of P∗ and d is
a state of the DFA. A state is final when d is final (d = 2).
The next step is to distill the observation language of the ab-
duction, namely the set of temporal observations generated
by the trajectories in the abduction (the observation pattern).
Definition 11 (observation pattern). Let X be a DES and
O the domain of observations involved in the mapping ta-
ble µ(X). An observation pattern O∗ of X is a DFA whose
language is a set of strings on O.
Def. 11 is general in nature. Still, meaningful observa-
tion patterns can be drawn from abductions. Specifically,
each symbol t marking a transition 〈a, t, a′〉 in an abduc-
tion X ∗S is replaced with a (possibly ε) observation o, where

Figure 7: DFA of scenario S (left) and abduction P ∗S (right).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

136

i O[i] Monitoring traceM
(
O[i]

)
Explanation trace E

(
M

(
O[i]

))
0 [] [α1?]

1 [val] [α1, (α1α1?|α1β3((α1β2)∗|α1(β2α1)∗))]

2 [val , sen] [α1, (α1|α1β3(α1β2)∗), (α1((β1α2)∗|β1(α2β1)∗)|α1β3(α1β2)∗)]

3 [val , sen, sen] [α1, α1, α1β1(α2β1)∗, α1β1(α2β1)∗]

Table 1: Temporal output of the explanation engine for the temporal observation O = [val , sen, sen] of the DES P .

(t, o, f) ∈ µ(X). The resulting NFA is then determinized
into an equivalent (possibly minimized) DFA, which is by
definition the observation pattern of the scenario S , namely
O∗S . Remarkably, the language of O∗S is the set of tempo-
ral observations associated with the set of trajectories in the
abduction, with each trajectory being a way the scenario S
manifests itself in X ∗.
Example 12 (observation pattern). With reference to the
scenario S defined in Example 10 and the abduction P∗S in
Fig. 7, shown in Fig. 8 is the observation pattern O∗S .

6.1 Explainer Upgrade
To upgrade a partial explainer X e based on an observation
pattern O∗, Algorithm 2 is used (lines 1–30). Each state xe
in X e is assumed to be marked with a labeling set (initially
empty), denoted Λ(xe), which contains states of O∗. This
serves to synchronize X e with O∗ avoiding duplications of
X e states, as well as endless loops caused by cycles in O∗.
If a state ω in Λ(xe) is unmarked, it means that the tran-
sitions exiting ω in O∗ need to be synchronized with the
transitions exiting xe in X e. In case a transition is missing
in X e, it is created, possibly along with its target state, a
fault space, which is marked with the relevant labeling set
(line 20). Once all transitions exiting ω in O∗ have been
processed, ω is marked in Λ(xe) (line 26). The processing
terminates when there is no unmarked ω in any labeling set.

Example 13 (explainer upgrade). Let Pe be the partial ex-
plainer defined in Example 9 and shown in Fig. 6. Let O∗S
be the observation pattern displayed in Fig. 8. The partial
explainer resulting from the application of Algorithm 2 on
Pe and O∗S is shown in Fig. 9.

Figure 8: Observation pattern O∗S (cf. P∗S in Fig. 7).

To what extent does the language of a partial explainer
change after being upgraded based on an observation pat-
tern? A formal answer is provided by Proposition 3.

Proposition 3. Let X e be a partial explainer, O∗ an obser-
vation pattern for X , and X ′e the partial explainer result-
ing from the application of the procedure Explainer Upgrade
to X e and O∗ (Algorithm 2). The following relationship
among observation languages holds:

OBS
(
X ′e

)
⊇ OBS (X e) ∪ (OBS (O∗) ∩OBS (X ∗)) . (15)

Intuitively, relationship (15) is grounded on two facts. First,
in general, not all the temporal observations in OBS (O∗)
are consistent with the space of X and, hence, the obser-
vation language of X ′e will include the additional temporal
observations in OBS (O∗)∩OBS (X ∗). Second, OBS (X ′e)
is bound to include (possibly an infinite number of) new tem-
poral observations not in this intersection. For example, if
O = [a] and X E involves an auto-transition on the initial
state marked by (a,L, f), then OBS (X ′e) will include not
only [a] but all the strings in the infinite set [a, aa, aaa, . . .].

Figure 9: Partial explainer obtained by upgrading Pe in Fig. 6
based on the observation pattern O∗S in Fig. 8.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

137

Algorithm 2 Explainer Upgrade

1: procedure EXPLAINER UPGRADE(X e, O∗)
2: input X e: a partial explainer of X , with initial state xe0
3: O∗: an observation pattern for X , with initial state ωo

4: side effects: X e is upgraded based on O∗
5: begin
6: Insert ω0 into the (initially empty) labeling set Λ(xe0)
7: repeat
8: Let Λ(xe) be a set including an unmarked pattern state ω
9: for all unmarked pattern state ω ∈ Λ(xe) do

10: for all transition 〈ω, o, ω′〉 in O∗ do
11: if ∃ a transition exiting xe marked with (o,L, f) then
12: for all transition 〈xe, (o,L, f), x′

e〉 in X e do
13: Insert ω′ into Λ(x′

e
), unless ω′ ∈ Λ(x′

e
) already

14: end for
15: else
16: for all x ∈ xe, 〈x, t, x′〉 ∈ X ∗, (t, o, f) ∈ µ(X) do
17: Let x′e denote the fault space of x′, namely X ∗x′

18: if X e does not include the state x′e then
19: Create the state x′e = X ∗x′ in X e

20: Mark x′e with the labeling set {ω′} (singleton)
21: end if
22: Create the transition 〈xe, (o,L(x), f), x′

e〉 in X e

23: end for
24: end if
25: end for
26: Mark the pattern state ω within the labeling set Λ(xe)
27: end for
28: until there is no labeling set Λ including an unmarked state
29: Empty all the nonempty labeling sets Λ in X e

30: end procedure

Corollary 3.1. With reference to Proposition 3, if O∗ is the
observation pattern of a behavioral scenario of X , then

OBS
(
X ′e

)
⊇ OBS (X e) ∪OBS (O∗) . (16)

Since an abduction is a subspace of X ∗ (including the ini-
tial state), if the observation pattern O∗ is distilled from the
abduction X ∗S of a scenario S , then O∗ is sound, that is,
OBS (O∗) ⊆ OBS (X ∗). This is why in eqn. (16) there is
no need for the intersection OBS (O∗) ∩OBS (X ∗).

6.2 Smart Explanation Engine
The Explanation Engine specified in Algorithm 1 needs to
be revised when the explainer is partial. Specifically, before
line 11 of Algorithm 1, we need to be sure that the transition
function of each state in µ is complete as far as the observa-
tion o is concerned.

The new algorithm, called Smart Explanation Engine (Al-
gorithm 3) differs from Algorithm 1 in two ways. First, it
takes as input a partial explainer X e. Second, and more to
the point, it includes a new fragment of pseudocode (lines 5–
15) aimed at upgrading X e based on o, specifically for the
possibly missing transitions involving the observation o and
exiting the states in µ.

To speed up the processing, each state in X e may be
marked with the set O of observations for which the tran-
sition function is complete. This way, if o ∈ O, lines 6–14
may be skipped.

Algorithm 3 Smart Explanation Engine
1: procedure SMART EXPLANATION ENGINE(X e,O,M, E , o)

... # Similar declarations as in lines 2–7 of Algorithm 1
2: begin
3: Extend O by the new observation o
4: Let µ denote the last node ofM (before the extension)
5: for all xe ∈ µ do
6: if there is no transition 〈xe, o, x′e〉 in X e then
7: for all x ∈ xe, 〈x, t, x′〉 ∈ X ∗, (t, o, f) ∈ µ(X) do
8: Let x′e denote the fault space of x′, namely X ∗x′

9: if x′e /∈ X e then
10: Create the state x′e = X ∗x′ in X e

11: end if
12: Insert the transition 〈xe, (o,L(x), f), x′

e〉 into τe

13: end for
14: end if
15: end for

... # Same code as in lines 11–22 of Algorithm 1
16: end procedure

Example 14 (smart explanation engine). Let Pe be the par-
tial explainer displayed in Fig. 9 andO = [val , sen, sen] the
temporal observation defined in Example 8, whose explana-
tion is traced in Table 1. The iterated application of Smart
Application Engine on O based on Pe does not change Pe.
By contrast, if O = [sen, val , sen], then Smart Application
Engine will upgrade Pe as shown in Fig. 10.

7 Conclusion
This paper deals with monitoring-based diagnosis of DESs
by proposing a shift from a set-oriented (hence, temporally-
free) to a temporal-oriented perspective. A temporal-
oriented diagnosis output, represented as a (finite) regular
expression over the alphabet of faults, supports explainabil-
ity, which is further enhanced by performing a backward
pruning every time a new observation is perceived. This
technique guarantees that all the candidates relevant to any
prefix of the temporal observation received so far are con-
sistent with the whole temporal observation received so far.

Figure 10: Partial explainer obtained by the iterated application of
Algorithm 3, starting from the partial explainer in Fig. 9 and based
on the temporal observation [sen, val , sen].

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

138

Backward pruning and smart knowledge compilation take
inspiration from (Bertoglio, Lamperti, and Zanella 2019a;
Bertoglio, Lamperti, and Zanella 2019b; Bertoglio et al.
2019); however, the quoted works adopt a set-oriented per-
spective.

The diagnoser approach (Sampath et al. 1995), besides
being set-oriented, does not cope with a possibly infinite
number of possibly infinite trajectories that entail the given
temporal observation. In fact, the diagnoser approach as-
sumes that both the language of the transitions and the lan-
guage of the observable events of the DES are live and that
the faulty transitions are unobservable, whereas such as-
sumptions are relaxed here. Consequently, while accord-
ing to the diagnoser approach there does not exist any un-
observable behavioral cycle, and hence, there does not ex-
ist any cycle of faults, both such cycles are allowed in the
current approach. Therefore, in this paper the regular ex-
pressions relevant to the occurrence of faults can represent
an unbounded number of iterations, while this is not needed
in case the temporal fault characterization were adopted by
the diagnoser approach (or by approaches making the same
assumptions).

Our temporal perspective in diagnosis of DESs is relevant
to the diagnosis output, while the component models are un-
timed. Some contributions in the literature, instead, added
temporal information to the DES models, such as (Hashtrudi
Zad, Kwong, and Wonham 2005), where the clock tick is an
extra input signal: thus, the DES model has changed while a
diagnosis is still a set of faults.

A DES model that, instead of being an automaton, is a
causal network is adopted in (Darwiche and Provan 1996),
which deals with diagnosis of dynamic systems governed by
a discrete controller that issues commands at discrete time
points. In order to incorporate temporal information in the
model, a causal network is created for each time point in the
time-step cycle of the system, and each network is connected
with the next time-point network. Once again, the notion of
diagnosis has not changed.

Other contributions in the literature are meant to general-
ize the notion of a fault in DESs. This is the case with (Jiang
and Kumar 2004), where a fault is defined as the violation
of an LTL-specification (among several given ones). How-
ever, a diagnosis is still a set of faults, while in this paper a
diagnosis is a set of temporal faults.

In (Jéron et al. 2006), the notion of a fault is generalized
to a pattern, this being a DFA that can represent the ordered
occurrences of multiple faults, the multiple occurrences of
the same fault, etc. It is tempting to speculate that a di-
agnosis output consisting in a set of temporal faults resem-
bles diagnosis with supervision patterns as a pattern enables
the detection of a specific language of transitions and, there-
fore, the detection of a specific language of faulty transitions
also. In other words, the supervision pattern approach can
find out whether there exists a trajectory that both implies
the given temporal observation and complies with the given
(pattern) language. Notice that there may exist several other
trajectories that imply the temporal observation while pro-
ducing sequences of faults that do not belong to the given
(pattern) language: the supervision pattern approach does

not produce any output about them. By contrast, the ap-
proach described in this paper is not given any automaton
upfront recognizing a language, instead it produces a regu-
lar expression representing the language of the faults of all
the trajectories that imply the given sequence of observa-
tions. Moreover, the output of the supervision pattern ap-
proach clarifies whether the pattern has occurred; however,
it does not compute the number of its occurrences, nor does
it show the reciprocal order of these occurrences and those
of individual faults within the trajectories implying the tem-
poral observation. In the view of the current paper, instead,
if a fault is associated with a pattern, this can be part of a
temporal fault as all other faults are. In summary, temporal
faults are orthogonal to the classification of faults, be they ei-
ther ‘simple’ or somehow ‘complex’ as in (Jéron et al. 2006;
Lamperti and Zanella 2011; Lamperti and Zhao 2014).

A challenging idea for future research is the generaliza-
tion of the notion of explainability of DESs proposed in this
paper. Specifically, the number of observations after which
the sets of temporal faults are required to be finite for a DES
to be enumerably explainable could be larger than one, with
various degrees of unexplainability being envisaged. More-
over, explainability could be compared with other properties
of DESs, such as diagnosability (Sampath et al. 1995; Pen-
colé 2004; Schumann and Huang 2008) and manifestability
(Dague, He, and Ye 2019). Finally, finding formal condi-
tions for the explainability of a DES and extending explana-
tory diagnosis to complex DESs (Lamperti and Quarenghi
2016; Lamperti and Zhao 2016a; Lamperti and Zhao 2016b;
Lamperti, Zanella, and Zhao 2018b) are further interesting
topics for future work.

Acknowledgments
This work was supported in part by Regione Lombardia
(project Smart4CPPS, Linea Accordi per Ricerca, Sviluppo
e Innovazione, POR-FESR 2014-2020 Asse I) and by the
National Natural Science Foundation of China (grant num-
ber 61972360).

References
Basile, F. 2014. Overview of fault diagnosis methods based
on Petri net models. In Proceedings of the 2014 European
Control Conference, ECC 2014, 2636–2642.
Bertoglio, N.; Lamperti, G.; Zanella, M.; and Zhao, X. 2019.
Twin-engined diagnosis of discrete-event systems. Engi-
neering Reports 1:1–20.
Bertoglio, N.; Lamperti, G.; and Zanella, M. 2019a. Intelli-
gent diagnosis of discrete-event systems with preprocessing
of critical scenarios. In Czarnowski, I.; Howlett, R.; and
Jain, L., eds., Intelligent Decision Technologies 2019, vol-
ume 142 of Smart Innovation, Systems and Technologies.
Springer, Singapore. 109–121.
Bertoglio, N.; Lamperti, G.; and Zanella, M. 2019b. Tem-
poral diagnosis of discrete-event systems with dual knowl-
edge compilation. In Holzinger, A.; Kieseberg, P.; Weippl,
E.; and Tjoa, A. M., eds., Machine Learning and Knowledge
Extraction, volume 11713 of Lecture Notes in Computer Sci-
ence. Springer, Berlin. 333–352.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

139

Brand, D., and Zafiropulo, P. 1983. On communicating
finite-state machines. Journal of the ACM 30(2):323–342.
Brzozowski, J., and McCluskey, E. 1963. Signal flow graph
techniques for sequential circuit state diagrams. IEEE Trans-
actions on Electronic Computers EC-12(2):67–76.
Cassandras, C., and Lafortune, S. 2008. Introduction to Dis-
crete Event Systems. New York: Springer, second edition.
Cong, X.; Fanti, M.; Mangini, A.; and Li, Z. 2018. Decen-
tralized diagnosis by Petri nets and integer linear program-
ming. IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems 48(10):1689–1700.
Dague, P.; He, L.; and Ye, L. 2019. How to be sure a
faulty system does not always appear healthy? Innovations
in Systems and Software Engineering.
Darwiche, A., and Provan, G. 1996. Exploiting system
structure in model-based diagnosis of discrete-event sys-
tems. In 7th International Workshop on Principles of Di-
agnosis (DX 1996), 95–105.
Hamscher, W.; Console, L.; and de Kleer, J., eds. 1992.
Readings in Model-Based Diagnosis. San Mateo, CA: Mor-
gan Kaufmann.
Hashtrudi Zad, S.; Kwong, R.; and Wonham, W. 2005.
Fault diagnosis in discrete-event systems: incorporating tim-
ing information. IEEE Transactions on Automatic Control
50(7):1010–1015.
Hopcroft, J.; Motwani, R.; and Ullman, J. 2006. Intro-
duction to Automata Theory, Languages, and Computation.
Reading, MA: Addison-Wesley, third edition.
Jéron, T.; Marchand, H.; Pinchinat, S.; and Cordier, M.
2006. Supervision patterns in discrete event systems diagno-
sis. In Workshop on Discrete Event Systems (WODES 2006),
262–268. Ann Arbor, MI: IEEE Computer Society.
Jiang, S., and Kumar, R. 2004. Failure diagnosis of discrete-
event systems with linear-time temporal logic specifications.
IEEE Transactions on Automatic Control 49(6):934–945.
Lamperti, G., and Quarenghi, G. 2016. Intelligent monitor-
ing of complex discrete-event systems. In Czarnowski, I.;
Caballero, A.; Howlett, R.; and Jain, L., eds., Intelligent De-
cision Technologies 2016, volume 56 of Smart Innovation,
Systems and Technologies. Springer International Publish-
ing Switzerland. 215–229.
Lamperti, G., and Zanella, M. 2011. Context-sensitive di-
agnosis of discrete-event systems. In Walsh, T., ed., Twenty-
Second International Joint Conference on Artificial Intelli-
gence (IJCAI 2011), volume 2, 969–975. Barcelona, Spain:
AAAI Press.
Lamperti, G., and Zhao, X. 2014. Diagnosis of active sys-
tems by semantic patterns. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 44(8):1028–1043.
Lamperti, G., and Zhao, X. 2016a. Diagnosis of com-
plex active systems with uncertain temporal observations.
In Buccafurri, F.; Holzinger, A.; Tjoa, A. M.; and Weippl,
E., eds., Availability, Reliability, and Security in Informa-
tion Systems, volume 9817 of Lecture Notes in Computer
Science. Springer International Publishing AG Switzerland.
45–62.

Lamperti, G., and Zhao, X. 2016b. Viable diagnosis of
complex active systems. In IEEE International Conference
on Systems, Man, and Cybernetics (SMC 2016), 457–462.
Lamperti, G.; Zanella, M.; and Zhao, X. 2018a. Introduction
to Diagnosis of Active Systems. Springer, Cham.
Lamperti, G.; Zanella, M.; and Zhao, X. 2018b. Knowl-
edge compilation techniques for model-based diagnosis of
complex active systems. In Holzinger, A.; Kieseberg, P.;
Tjoa, A. M.; and Weippl, E., eds., Machine Learning and
Knowledge Extraction, volume 11015 of Lecture Notes in
Computer Science. Springer, Cham. 43–64.
McIlraith, S. 1998. Explanatory diagnosis: conjecturing ac-
tions to explain observations. In Sixth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR 1998), 167–177. Trento, I: Morgan Kaufmann,
S. Francisco, CA.
Pencolé, Y.; Steinbauer, G.; Mühlbacher, C.; and Travé-
Massuyès, L. 2017. Diagnosing discrete event systems us-
ing nominal models only. In 28th International Workshop
on Principles of Diagnosis (DX 2017), 169–183.
Pencolé, Y. 2004. Diagnosability analysis of distributed
discrete event systems. In Sixteenth European Conference
on Artificial Intelligence (ECAI 2004), 43–47.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32(1):57–95.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen,
K.; and Teneketzis, D. 1995. Diagnosability of discrete-
event systems. IEEE Transactions on Automatic Control
40(9):1555–1575.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen,
K.; and Teneketzis, D. 1996. Failure diagnosis using
discrete-event models. IEEE Transactions on Control Sys-
tems Technology 4(2):105–124.
Schumann, A., and Huang, J. 2008. A scalable jointree al-
gorithm for diagnosability. In Twenty-Third National Con-
ference on Artificial Intelligence (AAAI 2008), 535–540.
Struss, P. 1997. Fundamentals of model-based diagnosis of
dynamic systems. In Fifteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI 1997), 480–485.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

140

	Introduction
	DES Modeling
	Explanation and Explainability
	Total Knowledge Compilation
	Monitoring and Explanation Trace
	Explanation Engine

	Smart Knowledge Compilation
	Explainer Upgrade
	Smart Explanation Engine

	Conclusion

