
Inputs, Outputs, and Composition in the Logic of Information Flows

Heba Aamer1 , Bart Bogaerts2 , Dimitri Surinx1 , Eugenia Ternovska3 , Jan Van den Bussche1
1Universiteit Hasselt, Belgium

2Vrije Universiteit Brussel, Belgium
3Simon Fraser University, Canada

{heba.mohamed,dimitri.surinx,jan.vandenbussche}@uhasselt.be, bart.bogaerts@vub.be, ter@sfu.ca

Abstract

The logic of information flows (LIF) is a general framework
in which tasks of a procedural nature can be modeled in a
declarative, logic-based fashion. The first contribution of this
paper is to propose semantic and syntactic definitions of in-
puts and outputs of LIF expressions. We study how the two
relate and show that our syntactic definition is optimal in a
sense that is made precise. The second contribution is a sys-
tematic study of the expressive power of sequential compo-
sition in LIF. Our results on composition tie in the results
on inputs and outputs, and relate LIF to first-order logic (FO)
and bounded-variable LIF to bounded-variable FO.

1 Introduction
The Logic of Information Flows (LIF) (Ternovska 2017;
Ternovska 2019) is a knowledge representation framework
designed to model and understand how information propa-
gates in complex systems, and to find ways to navigate it
efficiently. The basic idea is that modules, that can be given
procedurally or declaratively, are the atoms of a logic whose
syntax resembles first-order logic, but whose semantics pro-
duces new modules. In LIF, atomic modules are modeled as
relations with designated input and output arguments. Com-
putation is modeled as propagation of information from in-
puts to outputs, similarly to propagation of tokens in Petri
nets. The specification of a complex system then amounts to
connecting atomic modules together. For this purpose, LIF
uses the classical logic connectives, i.e., the boolean opera-
tors, equality, and existential quantification. The goal is to
start from constructs that are well understood, and to address
the fundamental question of what logical means are neces-
sary and sufficient to model computations declaratively. The
eventual goal, which goes beyond the topic of this paper, is
to come up with restrictions or extensions of LIF that make
the computations efficient.

In its most general form, LIF is a rich family of logics
with recursion and higher-order variables. Atomic modules
are given by formulae in various logics, and may be viewed
as solving the task of Model Expansion (Mitchell and Ter-
novska 2005): the input structure is expanded to satisfy the
specification of a module thus producing an output. The se-
mantics is given in terms of pairs of structures. We can, for
example, give a graph (a relational structure) on the input of
a module that returns a Hamiltonian cycle on the output, and

compose it sequentially with a module that checks whether
the produced cycle is of even length. One can vary both the
expressiveness of logics for specifying atomic modules and
the operations for combining modules, to achieve desirable
complexity of the computation for the tasks of interest.

Many issues surrounding LIF, however, are already inter-
esting in a first-order setting (see, e.g., (Aamer et al. 2020));
and in fact such a setting is more generic than the higher-
order setting, which can be obtained by considering rela-
tions as atomary data values. Thus, in this paper, we give a
self-contained, first-order presentation of LIF, with a seman-
tics defined in terms of pairs of valuations of first-order vari-
ables; the first valuation represents a situation right before
applying the module, while the second represents a possible
situation immediately afterwards. The results in this paper
are then also applicable to the case of higher-order variables.

Our contributions can be summarized as follows.
(i) While the input and output arguments of relation atoms

are specified by the vocabulary, it is not clear how to des-
ignate the input and output variables of a complex LIF
formula. Actually, coming up with formal definitions of
what it means for a variable to be an input or output is
a technically and philosophically interesting undertaking.
We propose semantic definitions, based on natural intu-
itions, which are, of course, open to further debate. The
semantic notions of input and output turn out to be unde-
cidable. This is not surprising, since LIF formulas sub-
sume classical first-order logic formulas, for which most
inference tasks in general are undecidable.

(ii) We proceed to give an approximate, syntactic definition
of the input and output variables of a formula, which is
effectively computable. Indeed, our syntactic definition is
compositional, meaning that the set of syntactic input (or
output) variables of a formula depends only on the top-
level operator of the formula, and the syntactic inputs and
outputs of the operands. We prove our syntactic input–
output notion to be sound: every semantic input or output
is also a syntactic input or output, and the syntactic inputs
and outputs are connected by a natural property that we
call input–output determinacy. Moreover, we prove an
optimality result: our definition provides the most precise
approximation to semantic input and outputs among all
compositional and sound definitions.

(iii) We investigate the expressive power of sequential com-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

2

position in the context of LIF. The sequential composi-
tion of two modules is fundamental to building complex
systems. Hence, we are motivated to understand in de-
tail whether or not this operation is expressible in terms
of the basic LIF connectives. This question turns out to
be approachable through the notion of inputs and outputs.
Indeed, there turns out to be an elegant expression for the
composition of io-disjoint modules. Here, io-disjointness
means that inputs and outputs do not overlap. For exam-
ple, a module that computes a function of x and returns
the result in y is io-disjoint; a module that stores the re-
sult back in x, thus overwriting the original input, is not.

(iv) We then use the result on io-disjoint expressions to
show that composition is indeed an expressible operator
in the classical setting of LIF, where there is an infinite
supply of fresh variables. (In contrast, the expression for
io-disjoint modules does not need extra variables.)

(v) Finally, we complement the above findings with a re-
sult on LIF in a bounded-variable setting: in this setting,
composition is necessarily a primitive operator.

Many of our notions and results are stated generally in terms
of transition systems (binary relations) on first-order valua-
tions. Consequently, we believe our work is also of value
to settings other than LIF inasmuch as they involve dynamic
semantics. Several such settings, where input–output speci-
fications are important, are discussed in Related Work.

The rest of this paper is organized as follows. In Section 2,
we formally introduce the Logic of Information Flows from
a first-order perspective. Section 3 presents our investiga-
tion concerning the notion of inputs and outputs of complex
expressions. Section 4 then presents our investigation on the
expressibility of sequential composition. Section 5 discusses
related work. We conclude in Section 6.

2 Preliminaries
A (module) vocabulary S is a triple (Names , ar, iar) where:
• Names is a nonempty set, the elements of which are

called module names;
• ar assigns an arity to each module name in Names ;
• iar assigns an input arity to each module name M in
Names , where iar(M) ≤ ar(M).
We fix a countably infinite universe dom of data ele-

ments. An interpretation D of S assigns to each mod-
ule name M in Names an ar(M)-ary relation D(M) over
dom.

Furthermore, we fix a universe of variables V. This set
may be finite or infinite; the size of V will influence the ex-
pressive power of our logic. A valuation is a function from
V to dom. The set of all valuations is denoted by V . We
say that ν1 and ν2 agree on Y ⊆ V if ν1(y) = ν2(y) for
all y ∈ Y and that they agree outside of Y if they agree on
V−Y A partial valuation on Y ⊆ V is a function from Y to
V; we will also call such a function a Y -valuation. If ν is a
valuation, we use ν|Y to denote its restriction to Y . Let ν be
a valuation and let ν1 be a partial valuation on Y ⊆ V. Then
the substitution of ν1 into ν, denoted by ν[ν1] is defined as
ν1 ∪ (ν|V−Y). We assume familiarity with the syntax and
semantics of first-order logic (FO, relational calculus) over
S (Enderton 1972) and use := to mean “is by definition”.

BRVs The semantics of LIF will be defined in terms of
binary relations on V (abbreviated BRV: Binary Relations
on Valuations). Before formally introducing LIF, we define
operations on BRVs corresponding to the classical logical
connectives, adapted to a dynamic semantics. For boolean
connectives, we simply use the standard set operations. For
equality, we introduce selection operators. For existential
quantification, we introduce cylindrification operators.

Let A and B be BRVs, let Z be a finite set of variables,
and let x and y be variables.
• Set operations: A∪B,A∩B, andA−B are well known.
• Composition
A;B := {(ν1, ν2) | ∃ν3 : (ν1, ν3) ∈ A and (ν3, ν2) ∈ B}

• Left and Right Cylindrifications

cyllZ(A) := {(ν1, ν2) | ∃ν′1 : (ν′1, ν2) ∈ A
and ν′1 and ν1 agree outside of Z}

cylrZ(A) := {(ν1, ν2) | ∃ν′2 : (ν1, ν
′
2) ∈ A

and ν′2 and ν2 agree outside of Z}
• Left and Right Selection

σl
x=y(A) := {(ν1, ν2) ∈ A | ν1(x) = ν1(y)}
σr
x=y(A) := {(ν1, ν2) ∈ A | ν2(x) = ν2(y)}

• Left-To-Right Selection
σlr
x=y(A) := {(ν1, ν2) ∈ A | ν1(x) = ν2(y)}

If x̄ and ȳ are tuples of variables of length n, we write
σlr
x̄=ȳ(A) for σlr

x1=y1σ
lr
x2=y2 . . . σ

lr
xn=yn(A) and if z is a vari-

able we write cyllz for cyll{z}. Intuitively, a BRV is a dy-
namic system that manipulates the interpretation of vari-
ables. A pair (ν1, ν2) in a BRV represents that a transition
from ν1 to ν2 is possible, i.e., that when given ν1 as in-
put, the values of the variables can be updated to ν2. The
different operations defined above correspond to manipu-
lations/combinations of such dynamic systems. Union, for
instance, represents a non-deterministic choice, while com-
position corresponds to composing two such systems. Left
cylindrification corresponds, in the dynamic view to per-
forming search before following the underlying BRV. In-
deed, when given an input ν1, alternative values for the
cylindrified variables are searched for which transitions are
possible. The selection operations correspond to performing
checks, on the input, the output, or a combination of both in
addition to performing what the underlying BRV does.

Some of the above operators are redundant, in the sense
that they can be expressed in terms of others, for instance,
A ∩B = A− (A−B). We also have:
Lemma 1. For any BRVsA andB, and any variables x and
y, the following hold:

σr
x=y(A) = A ∩ cyllxσ

lr
x=yσ

lr
x=xcyllx(A)

σl
x=y(A) = A ∩ cylrxσ

lr
y=xσ

lr
x=xcylrx(A)

The expression for σr
x=y can be explained as follows.

First, we copy x from right to left by applying cyllx followed
by σlr

x=x. Selection σr
x=y can now be simulated by σlr

x=y .
The original x value on the left is restored by a final appli-
cation of cyllx and intersecting with the original A.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

3

The Logic of Information Flows The language of LIF ex-
pressions α over a vocabulary S is defined by the following
grammar:

α ::=id |M(z) | α ∪ α | α ∩ α | α− α | α ; α

| cyllZ(α) | cylrZ(α) | σlr
x=y(α) | σl

x=y(α) | σr
x=y(α)

Here, M is any module name in S , Z is a finite set of
variables; z is a tuple of variables; and x, y are variables.
For atomic module expressions, i.e., expressions of the form
M(z), the length of z must equal ar(M). In practice, we
will often write M(x; y) for atomic module expressions,
where x is a tuple of variables of length iar(M) and y is
a tuple of variables of length ar(M)− iar(M).

We will define the semantics of a LIF expression α, in
the context of a given interpretation D, as a BRV which will
be denoted by JαKD. Thus, adapting Gurevich’s terminol-
ogy (Gurevich 1983; Gurevich 1988), every LIF expression
α denotes a global BRV JαK: a function that maps interpre-
tations D of S to the BRV α(D) := JαKD.

For atomic module expressions, we define

JM(x; y)KD := {(ν1, ν2) ∈ V×V | ν1(x) · ν2(y) ∈ D(M)

and ν1 and ν2 agree outside of y}.
Here, ν1(x) · ν2(y) denotes the concatenation of tuples.
Intuitively, the semantics of an expression M(x; y) repre-
sents a transition from ν1 to ν2: the inputs of the mod-
ule are “read” in ν1 and the outputs are updated in ν2.
The value of every variable that is not an output is pre-
served; this important semantic principle is a realization of
the commonsense law of inertia (McCarthy and Hayes 1969;
Lifschitz 1987). We further define

JidKD := {(ν, ν) | ν ∈ V}.
The semantics of other operators is obtained directly by ap-
plying the corresponding operation on BRVs, e.g.,

Jα− βKD := JαKD − JβKD
Jσlr
x=y(α)KD := σlr

x=y(JαKD)

We say that α and β are equivalent if JαKD = JβKD for each
interpretation D, i.e., if they denote the same global BRV.

3 Inputs and Outputs
We are now ready to study inputs and outputs of LIF ex-
pressions, and, more generally, of global BRVs. We first in-
vestigate what inputs and outputs mean on the semantic level
before introducing a syntactic definition for LIF expressions.

3.1 Semantic Inputs and Outputs
Intuitively, an output is a variable whose value can be
changed by the expression, i.e., a variable that is not sub-
ject to inertia.
Definition 2. A variable x is a semantic output for a global
BRV Q if there exists an interpretation D and (ν1, ν2) ∈
Q(D) such that ν1(x) 6= ν2(x). We use Osem(Q) denote
the set of semantic output variables of Q. If α is a LIF ex-
pression, we call a variable a semantic output of α if it is
a semantic output of JαK. We also write Osem(α) for the
semantic outputs of α.

Defining semantic inputs is a bit more subtle. Intuitively,
a variable is an input for a BRV if its value on the left-hand
side matters for determining the right-hand side (i.e., that if
the value of the input would have been different, so would
have been the right-hand side; which is in fact a very coarse
counterfactual definition of actual causality (Lewis 1973)).
However, a naive formalization of this intuition would result
in a situation in which all inertial variables are inputs since
their value on the right-hand side always equals to the one
on the left-hand side. A slight refinement of our intuition
is that the inputs are those variables whose value matters
for determining the possible values of the outputs. This is
formalized in the following definitions.
Definition 3. Let Q be a global BRV and X,Y be sets of
variables. We say that X determines Q on Y if for every
interpretation D, every (ν1, ν2) ∈ Q(D) and every ν′1 such
that ν′1 = ν1 on X , there exists a ν′2 such that ν′2 = ν2 on Y
and (ν′1, ν

′
2) ∈ Q(D).

Definition 4. A variable x is a semantic input for a global
BRV Q if V− {x} does not determine Q on Osem(Q). The
set of input variables ofQ is denoted by Isem(Q). A variable
is a semantic input of a LIF expression α if it is a semantic
input of JαK; the semantic inputs of α are denoted Isem(α).

Rephrased, x is a semantic input if there is an interpre-
tation D and valuations ν1, ν2, and ν′1 such that (ν1, ν2) ∈
Q(D) and ν′1 = ν1 outside of x, while there is no ν′2 such
that ν′2 = ν2 on Osem(Q) and (ν′1, ν

′
2) ∈ Q(D). The fol-

lowing proposition shows that the semantic inputs of Q are
indeed exactly the variables that determine Q.
Proposition 5. A set of variables X determines a global
BRV Q on Osem(Q) if and only if Isem(Q) ⊆ X .

Our next property of semantic inputs and outputs ex-
presses that they are exactly what one expects for atomic
modules.
Proposition 6. If α is an atomic LIF expressions M(x̄; ȳ),
then Isem(α) = x̄ and Osem(α) = ȳ.

Example 7. A variable can be both input and output of a
given expression. A very simple example is an atomic mod-
ule P1(x;x). To illustrate where this can be useful, as-
sume dom = Z and consider an interpretation D such that
D(P1) = {(n, n+ 1) | n ∈ Z}. In that case, the expression
P1(x;x) represents a dynamic system in which the value of
x is incremented by 1; x is an output of the system since
its value is changed; it is an input since its original value
matters for determining its value in the output.

Intuitively, the inputs and outputs are the only variables
that matter for a given global BRV, similar to how in classi-
cal logic the free variables are the only ones that matter. All
other variables can take arbitrary values, but, their values are
preserved by inertia, i.e., remain unchanged by the dynamic
system. We now formalize this intuition.
Definition 8. Let Q be a global BRV and X a set of vari-
ables. We say that Q is inertially cylindrified on X if for
every interpretation D and every (ν1, ν2) ∈ Q(D):
(i) ν1 and ν2 are equal on X and
(ii) for every X-valuation ν′ also (ν1[ν′], ν2[ν′]) ∈ Q(D).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

4

Proposition 9. Every global BRVQ is inertially cylindrified
outside the semantic inputs and outputs of Q.

We will now show that the problem of deciding whether
a given variable is a semantic input or output of a LIF ex-
pression is undecidable. Thereto we begin by noting that
first-order logic (FO) is naturally embedded in LIF in the
following manner. When evaluating FO formulas on inter-
pretations, we agree that the domain of quantification is al-
ways dom.
Lemma 10. Let S be a vocabulary with iar(R) = 0 for
every R ∈ S . Then, for every FO formula ϕ over S , there
exists a LIF expression αϕ such that for every interpretation
D the following holds:

JαϕKD = {(ν, ν) | D, ν |= ϕ}.

Proof sketch. The proof is by structural induction on ϕ.
• If ϕ is x = y, take αϕ = σr

x=y(id).
• If ϕ is R(x̄) for some R ∈ S , take αϕ = id ∩R(; x̄).
• If ϕ is ϕ1 ∨ ϕ2, take αϕ = αϕ1 ∪ αϕ2 .
• If ϕ is ¬ϕ1, take αϕ = id − αϕ1

.
• If ϕ is ∃xϕ1, take αϕ = σlr

x=x(cyllx(cylrx(αϕ1))).

It is well known that satisfiability of FO formulas over a
fixed countably infinite domain is undecidable. This leads to
the following undecidability results.

Problem: Semantic Output Membership Given: a vari-
able x and a LIF expression α. Decide: x ∈ Osem(α)?

Proposition 11. The semantic output membership problem
is undecidable.

Proof sketch. By reduction from the satisfiability of FO for-
mulas. Let ϕ be an FO formula and let αϕ be the LIF ex-
pression obtained from Lemma 10. Let α := cyllx(αϕ). It
can be verified that x ∈ Osem(α) iff ϕ is satisfiable.

Problem: Semantic Input Membership Given: a variable
x and a LIF expression α. Decide: x ∈ Isem(α)?

Proposition 12. The semantic input membership problem is
undecidable.

Proof sketch. Let ϕ be an FO formula and let αϕ be the LIF
expression obtained from Lemma 10. Let α := σl

x=z(αϕ),
where z is a variable that is not a free variable of ϕ and
different from x. It can be verified that x ∈ Isem(α) iff ϕ is
satisfiable.

3.2 Syntactic Inputs and Outputs
Since both the membership problems for semantic inputs
and outputs are undecidable, to use inputs and outputs in
practice, we will need decidable approximations of these
concepts. Before giving our syntactic definition, we define
some properties of candidate definitions.
Definition 13. Let I and O be functions from LIF expres-
sions to sets of variables. We say that (I,O) is a sound
input–output definition if the following hold:
• If α = M(x; y), then I(α) = x and O(α) = y,

• I(α) ⊇ Isem(α),
• O(α) ⊇ Osem(α), and
• I(α) determines JαK on O(α).

The first condition states that on atomic expressions (of
which we know the inputs), I and O are defined correctly.
The next two conditions state that I and O approximate the
semantic notions correctly. We only allow for overapproxi-
mations; that is, false positives are allowed while false neg-
atives are not. The reason for this is that falsely marking a
variable as non-output while it is actually an output would
mean incorrectly assuming the variable cannot change value.
A similar argument can be made for inputs. The last condi-
tion establishes the relation between I and O, and is called
input–output determinacy. It states that the inputs need to be
large enough to determine the outputs, as such generalizing
the defining condition of semantic inputs. Essentially, this
means that whenever we overapproximate our outputs, we
should also overapproximate our inputs to compensate for
this; that correspondence is formalized in Lemma 15.

Besides requiring that our definitions be sound, we will
focus on definitions that are compositional, in the sense that
definitions of inputs and outputs of compound expressions
can be given in terms of their direct subexpressions essen-
tially treating subexpressions as black boxes. This means
that the definition nicely follows the inductive definition of
the syntax. Formally:
Definition 14. Suppose I and O are functions from LIF ex-
pression to sets of variables. We say that (I,O) is compo-
sitional if for all LIF expressions α1, α2, β1, and β2 with
I(α1) = I(α2), O(α1) = O(α2), I(β1) = I(β2), and
O(β1) = O(β2) the following hold:
• For every unary operator �: I(�α1) = I(�α2) and
O(�α1) = O(�α2); and

• For every binary operator �: I(α1 � β1) = I(α2 � β2),
and O(α1 � β1) = O(α2 � β2).
The previous definition essentially states that in order to

be compositional, the inputs and outputs of α1 � β1 and
�α1 should only depend on the inputs and outputs of α1 and
β1, and not on their inner structure. The following lemma
rephrases input–output determinacy in terms of the inputs
and outputs: in order to determine the output-value of an
inertial variable, we need to know its input-value.
Lemma 15. Let (I,O) be a sound input–output definition
and let α be a LIF expression. If α is satisfiable,1 then

O(α)−Osem(α) ⊆ I(α).

If (I,O) is compositional, this holds for all α.

Proof Sketch. The proof hinges on the fact that if a variable
x is neither in Isem(α), nor Osem(α), Proposition 9 applies,
and x is inertially cylindrified. However, in such case, all
sets of variables that determine JαK on O(α) should contain
x (this can be seen by taking any D such that JαKD 6= ∅).
For the compositional case, we can always replace subex-
pressions by atomic expressions with the same inputs and
outputs to ensure satisfiability.

1By satisfiable, we here mean that there exists an interpretation
D such that JαKD 6= ∅.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

5

We now provide a sound and compositional input–output
definition. While the definition might seem complex, there
is a good reason for the different cases. Indeed, as we show
below in Theorem 21, our definition is optimal among the
sound and compositional definitions. In the definition, the
condition x=syn y simply means that x and y are the same
variable and4 denotes the symmetric difference of two sets.
Definition 16. The syntactic inputs and outputs of a LIF ex-
pression α, denoted Isyn(α) and Osyn(α) respectively, are
defined recursively as given in Table 1.

While we do not have enough space to discuss the motiva-
tion for all the cases of Definition 16 (their motivation will
be clarified in Theorem 21), we here discuss one of the most
difficult parts, namely the case where α = σlrx=y(α1). For a
given interpretation D,

JαKD = {(ν1, ν2) ∈ Jα1KD | ν1(x) = ν2(y)}.
First of all, since JαKD ⊆ Jα1KD, it is clear that the outputs
of α should be a subset of those of α1 (if α1 admits no pairs
in its semantics that change the value of a variable, then nei-
ther does α). For the special case in which x and y are the
same variable, this selection enforces x to be inertial, i.e., it
should not be an output of α.

Secondly, all inputs of α1 remain inputs of α. Since we
select those pairs whose y-value on the righ equals the x-
value on the left, clearly x must be an input of α (the special
case x=syn y and y 6∈ Osyn(α1) only covers cases where
α1 and α are actually equivalent). Whether or not y is an
input depends on α1: if y 6∈ Osyn(α1), y is inertial. Since
we compare the input-value of x with the output-value of y,
essentially this is the same as comparing the input-values of
both variables, i.e., the value of y on the input-side matters.
On the other hand, if y ∈ Osyn(α1), the value of y can be
changed by α1 and thus this selection does not force y to be
an input.

Our syntactic definition is clearly compositional (since we
only use the inputs and outputs of subexpressions). An im-
portant result is that our definition is also sound, i.e., that our
syntactic concepts are overapproximations of the semantic
concepts.
Theorem 17. (Isyn, Osyn) is a sound and compositional
input–output definition.

Of course, since the semantic notions of inputs and out-
puts are undecidable and our syntactic notions clearly are
decidable, expressions exist in which the semantic and syn-
tactic notions do no coincide. We give some examples.
Example 18. Consider the LIF expression

α := σl
x=yσ

r
x=yR(x; y)

In this case, Osem(α) = ∅. However, it can be verified that
Osyn(α) = {x, y}.
Example 19. Consider the LIF expression

α := σlr
x=xcylrxcyllxP (x;).

Thus, we first cylindrify x on both sides and afterwards only
select those pairs that have inertia. As such, x is inertially
cylindrified in α and x 6∈ Osem(α), x 6∈ Isem(α). However,
Isyn(α) = {x}.

These examples suggest that our definition can be im-
proved. Indeed, one can probably keep coming up with ad-
hoc but more precise approximations of inputs and outputs
for various specific patterns of expressions. Such improve-
ments would not be compositional, as they would be based
on inspecting the structure of subexpressions. In the follow-
ing results, we show that (Isyn, Osyn) is actually the most
precise sound and compositional input–output definition.
Theorem 20 (Precision Theorem). Let α be a LIF expres-
sion that is either atomic, or a unary operator applied to an
atomic module expression, or a binary operator applied to
two atomic module expressions involving different module
names. Then

Osem(α) = Osyn(α) and Isem(α) = Isyn(α).

Proof sketch. The proof is done by an extensive case anal-
ysis. For each of the different operations, and every vari-
able z, if z ∈ Osyn(α), then we can construct an inter-
pretation D such that z is not inertial in JαKD and thus
z ∈ Osem(α). Similarly, for every variable z ∈ Isyn(α),
we can construct an interpretation D as a witness of the fact
that V − {z} does not determine JαK on Osem(α) and thus
that z ∈ Isem(α).

Now, the precision theorem forms the basis for our main
result on syntactic inputs and outputs, which states that Def-
inition 16 yields the most precise sound and compositional
input–output definition.
Theorem 21 (Optimality Theorem). Suppose (I,O) is a
sound and compositional input–output definition. Then for
each LIF expression α:

Isyn(α) ⊆ I(α) and Osyn(α) ⊆ O(α).

Proof sketch. The proof is by induction on the structure of
α. For atomic module expressions α, this follows directly
from Theorem 20. For α = id this is immediate since
Isyn(id) = Osyn(id) = ∅.

We only give the inductive case for inputs, and α of the
form α1∪α2. We define α′1 = M1(x̄; ȳ) and α′2 = M2(ū, v̄)
where x̄ = I(α1), ȳ = O(α1), ū = I(α2), and v̄ = O(α2)
with Mi distinct module names of the right arity.

Since (I,O) is compositional, we know that

I(α1 ∪ α2) = I(α′1 ∪ α′2). (1)

We also know that

I(α′1 ∪ α′2) ⊇ Isem(α′1 ∪ α′2) = Isyn(α′1 ∪ α′2), (2)

where the inclusion holds since (I,O) is sound and the
equality follows from the Precision Theorem. We now claim
that

Isyn(α′1 ∪ α′2) ⊇ Isyn(α1 ∪ α2). (3)
By combining Equations (1–3), we find that

I(α1 ∪ α2) ⊇ Isyn(α1 ∪ α2),

which we needed to show.
All that is left to do is to prove our claim. From the

inductive hypothesis, we know that for i ∈ {1, 2}:
Isyn(αi) ⊆ I(αi) = I(α′i) = Isyn(α′i)

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

6

α Isyn(α) Osyn(α)
id ∅ ∅
M(x; y) {x1, . . . , xn} where x = x1, . . . , xn {y1, . . . , yn} where y = y1, . . . , yn
α1 ∪ α2 Isyn(α1) ∪ Isyn(α2) ∪ (Osyn(α1)4Osyn(α2)) Osyn(α1) ∪Osyn(α2)
α1 ∩ α2 Isyn(α1) ∪ Isyn(α2) ∪ (Osyn(α1)4Osyn(α2)) Osyn(α1) ∩Osyn(α2)
α1 − α2 Isyn(α1) ∪ Isyn(α2) ∪ (Osyn(α1)4Osyn(α2)) Osyn(α1)
α1 ; α2 Isyn(α1) ∪ (Isyn(α2)−Osyn(α1)) Osyn(α1) ∪Osyn(α2)

cyllx(α1) Isyn(α1)− {x} Osyn(α1) ∪ {x}
cylrx(α1) Isyn(α1) Osyn(α1) ∪ {x}

σlr
x=y(α1)


Isyn(α1) if x=syn y and y 6∈ Osyn(α1)

Isyn(α1) ∪ {x, y} if x 6=syn y and y 6∈ Osyn(α1)

Isyn(α1) ∪ {x} otherwise

{
Osyn(α1)− {x} if x=syn y

Osyn(α1) otherwise

σl
x=y(α1)

{
Isyn(α1) if x=syn y

Isyn(α1) ∪ {x, y} otherwise
Osyn(α1)

σr
x=y(α1)

{
Isyn(α1) if x=syn y

Isyn(α1) ∪ ({x, y} −Osyn(α1)) otherwise
Osyn(α1)

Table 1: Syntactic inputs and outputs for LIF expressions.

and similarly for the outputs: Osyn(αi) ⊆ Osyn(α′i). To
show the claim, take any variable

x ∈ Isyn(α1 ∪ α2)

= Isyn(α1) ∪ Isyn(α2) ∪ (Osyn(α1)4Osyn(α2)).

If x ∈ Isyn(αi) for some i, we know x ∈ Isyn(α′i) ⊆
Isyn(α′1 ∪ α′2). If x ∈ Osyn(α1) 4 Osyn(α2), we can as-
sume by symmetry that x ∈ Osyn(α1) ⊆ Osyn(α′1), while
x 6∈ Osyn(α2). We make a distinction in two cases:

Case 1: If x 6∈ Osyn(α′2), then x ∈ Osyn(α′1) 4
Osyn(α′2) ⊆ Isyn(α′1 ∪ α′2) and the result easily follows.

Case 2: If x ∈ Osyn(α′2), then x ∈ O(α′2) = O(α2).
Since x 6∈ Osyn(α2), x 6∈ Osem(α2) either. Since (I,O)
is sound and compositional, Lemma 15 then states that x ∈
I(α2) = I(α′2) = Isyn(α′2) ⊆ Isyn(α′1∪α′2), which finishes
our proof.

4 Primitivity of Composition
We now turn our attention to the study of composition in
LIF. We begin by showing that for “well-behaved” expres-
sions (all subexpressions have disjoint inputs and outputs)
composition is redundant in LIF: every well-behaved LIF
expression is equivalent to a LIF expression that does not
use composition. As a corollary, we will obtain that com-
position is generally redundant if there is an infinite supply
of variables. In contrast, in the bounded variable case, we
will show that composition is primitive in LIF. Here, we use
LIFnc to denote the fragment of LIF without composition.

4.1 When Input and Output are Disjoint,
Composition is Non-Primitive

Our first non-primitivity result is based on inputs and out-
puts. We say that a LIF expression β is io-disjoint if
Osem(β) ∩ Isem(β) = ∅. The following theorem implies
that if α, β, and all their subexpressions are io-disjoint, we
can rewrite α ; β into a LIFnc expression.

Theorem 22. Let α and β be LIF expressions such that β is
io-disjoint. Then, α ; β is equivalent to

γ := cylrOsem(β)(α) ∩ cyllOsem(α)(β).

Intuitively, the reason why this expression works is as fol-
lows: we cylindrify α on the right. In general, this might
result in a loss of information, but since we are only cylin-
drifying outputs of β, this means we only forget the informa-
tion that would be overwritten by β anyway. Since the inputs
and outputs of β are disjoint, β does not need to know what
α did to those variables in order to determine its own out-
puts. We also cylindrify β on the left on the outputs of α,
since these values will be set by α. One then still needs to
be careful in showing that the intersection indeed removes
all artificial pairs, by exploiting the fact that expressions are
inertial outside of their output.

Proof. Let D be an interpretation. First, we show that Jα ;
βKD ⊆ JγKD. If (ν1, ν2) ∈ Jα ; βKD, then there is a ν3 such
that (ν1, ν3) ∈ JαKD and (ν3, ν2) ∈ JβKD. By definition of
the outputs of β, ν3 and ν2 agree outside ofOsem(β). Hence,
(ν1, ν2) ∈ JcylrOsem(β)(α)KD. Similarly, we can show that
(ν1, ν2) ∈ JcyllOsem(α)(β)KD.

For the other inclusion, assume that (ν1, ν2) ∈ JγKD. Us-
ing the definition of the semantics of cylindrification, we
find ν′2 such that (ν1, ν

′
2) ∈ JαKD and ν2 agrees with ν′2

outside of Osem(β) and we find a ν′1 such that ν′1 agrees
with ν1 outside of Osem(α) and (ν′1, ν2) ∈ JβKD. Using
the definition of output of β, we know that also ν′1 agrees
with ν2 outside of the outputs of β, thus ν′1 and ν′2 agree
outside of the outputs of β, and hence definitely on the in-
puts of β. Since (ν′1, ν2) ∈ JβKD and Proposition 5 guar-
antees that β is determined by its inputs, there exists a ν′′2
such that (ν′2, ν

′′
2) ∈ JβKD where ν′′2 = ν2 on the outputs

of β and, since β is inertial outside its outputs, ν′′2 = ν′2
outside the outputs of β. But we previously established
that ν′2 agrees with ν2 outside of the outputs of β, hence

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

7

ν′′2 = ν2. Summarized we now found that (ν1, ν
′
2) ∈ JαKD

and (ν′2, ν2) ∈ JβKD, hence indeed (ν1, ν2) ∈ Jα ; βKD.

Given the undecidability results of the previous section,
Theorem 22 is not effective. We can however give the fol-
lowing syntactic variant, which is proven similarly.
Theorem 23. Let α and β be LIF expressions such that
Osyn(β) ∩ Isyn(β) = ∅. Then, α ; β is equivalent to

cylrOsyn(β)(α) ∩ cyllOsyn(α)(β).

The expression obtained in Theorem 22 does not work if β
has overlapping inputs and outputs as the following example
illustrates.
Example 24 (Example 7 continued). Consider the expres-
sion

α := P1(x;x) ; P1(x;x).

with the interpretation D as before. In this case, α incre-
ments the value of x by two. However, Jcylrx(P1(x;x))KD
and Jcyllx(P1(x;x))KD are both equal to

{(ν1, ν2) | ν1(z) = ν2(z) for all z 6= x}.
Hence indeed, in this case α is not equivalent to

cylrx(P1(x;x)) ∩ cyllx(P1(x;x)).

4.2 If V is Infinite, Composition is Non-Primitive
We know from Theorem 22 that if β is io-disjoint, α and β
can be composed without using composition. If V is suffi-
ciently large, we can force any expression β to be io-disjoint
by having β write its output onto unused variables instead of
its actual outputs. The composition can then be eliminated
following Theorem 22, after which we move the variables
back so that the “correct” outputs are used. What we need to
show is that the “moving the variables around”, as described
above, is expressible without composition. As before, we
define the operators on BRVs but their definition is lifted to
LIF expressions in a straightforward way.
Definition 25. Let B be a BRV and let x̄ and ȳ be disjoint
tuples of distinct variables of the same length. The right
move is defined as follows:

mvr
x̄→ȳ(B) := {(ν1, ν2) | ν2(x̄) = ν1(x̄)

and ∃ν′2 : (ν1, ν
′
2) ∈ B and ν′2(x̄) = ν2(ȳ)

and ν2 = ν′2 outside x̄ ∪ ȳ}.
This operation can be expressed without composition.

Lemma 26. For any BRV B, we have

mvr
x̄→ȳ(B) = σlr

x̄=x̄cylrx̄σ
r
x̄=ȳcylrȳ(B)

The intuition for the expression in Lemma 26 is as fol-
lows. We first cylindrify the ȳ variables on the right so that
the subsequent selection effectively copies x̄ to ȳ. The final
two operations make sure that the x̄ variables are inertial.
Lemma 27. LetA andB be BRVs and let x̄ and ȳ be disjoint
tuples of distinct variables of the same length such that all
variables in ȳ are inertially cylindrified in A and B. In that
case:

A ;B = mvr
ȳ→x̄(A ; mvr

x̄→ȳ(B)).

What Lemma 27 shows is that we can temporarily move
certain variables (the x̄) to unused variables (the ȳ) and then
move them back. The proof of this lemma is based on the
properties that (i) A ; mvr

x̄→ȳ(B) = mvr
x̄→ȳ(A ;B) and that

(ii) if the variables in ȳ are inertially cylindrified in a BRV
C, then mvr

ȳ→x̄(mvr
x̄→ȳ(C)) = C. This finally brings us to

the main result of the current subsection.

Theorem 28. If V is infinite, then every LIF expression is
equivalent to a LIFnc expression.

Proof Sketch. For a LIF expression α ; β we can choose a
tuple of variables ȳ of the same length as Osyn(β), such that
ȳ does not occur in α ; β. In that case, ȳ is inertially cylin-
drified in α and in β and hence Lemma 27 yields that α ; β
is equivalent to

mvr
ȳ→Osyn(β)(α ; mvr

Osyn(β)→ȳ(β)).

Furthermore, it can be verified that mvr
Osyn(β)→ȳ(β) is syn-

tactically io-disjoint. Hence, we can apply Theorem 23 to
eliminate the composition. This construction can be applied
recursively to eliminate all occurrences of composition.

4.3 If V is Finite, Composition is Primitive
The case that remains is when V is finite. We will show
that in this case, composition is indeed primitive by relating
bounded-variable LIF to bounded-variable first-order logic.

Assume V = {x1, . . . , xn}. Since BRVs involve pairs of
V-valuations, we introduce a copy Vy = {y1, . . . , yn} dis-
joint from V. For notational convenience we also write Vx
for V. As usual, by FO[k] we denote the fragment of first-
order logic that uses only k distinct variables. We observe:

Proposition 29. For every LIF expression α, there exists an
FO[3n] formula ϕα with free variables in Vx∪Vy such that

(ν1, ν2) ∈ JαKD iff D, (ν1 ∪ ν′2) |= ϕα,

where ν′2 is the Vy-valuation such that ν′2(yi) = ν2(xi) for
each i. Furthermore, if α is a LIFnc expression, ϕα can be
taken to be a FO[2n] formula.

Proof. The proof is by induction on the structure of α (using
Lemma 1, we omit redundant operators).

We introduce a third copy Vz = {z1, . . . , zn} of V. For
every u, v ∈ {x, y, z} we define ρuv as follows:

ρuv : Vu → Vv : ui 7→ vi

Using these functions, we can translate a valuation ν on V =
Vx to a corresponding valuation on Vu with u ∈ {y, z}.
Clearly, ν ◦ ρux does this job.

In the proof, we actually show a stronger statement by
induction, namely that for each α and for every u 6= v ∈
{x, y, z} there is a formula ϕuvα with free variables in Vu ∪
Vv in FO[Vx ∪ Vy ∪ Vz] such that for every D:

(ν1, ν2) ∈ JαKD iff D, (ν1 ◦ ρux ∪ ν2 ◦ ρvx) |= ϕuvα .

Since the notations x, y, z, u and v are taken, we use nota-
tions a, b and c for variables.
• α = id . For ϕuvα we can take

∧n
i=1 ui = vi.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

8

• α = M(a; b). For ϕuvα we can take M(ρxu(a), ρxv(b)) ∧∧
c6∈b ρxu(c) = ρxv(c).

• α = α1 ∪ α2, we take ϕuvα = ϕuvα1
∨ ϕuvα2

.
• α = cylla(α1). For ϕuvα we can take ∃ρxu(a) ϕuvα1

.
• α = cylra(α1). For ϕuvα we can take ∃ρxv(a) ϕuvα1

.
• α = α1 − α2. For ϕuvα we can take ϕuvα1

∧ ¬ϕuvα2
.

• α = σlr
a=b(α1). For ϕuvα we can take ϕα1 ∧ ρxu(a) =

ρxv(b).
• α = α1 ; α2. Let w ∈ {x, y, z} − {u, v}. Define ϕuvα =
∃w1 . . . ∃wn (ϕuwα1

∧ ϕwvα2
).

Now that we have established that LIFnc can be translated
into FO[2n], all that is left to do is find a Boolean query that
can be expressed in LIF with n variables, but not in FO[2n].
We find such a query in the existence of a 3n-clique. We
will first show that we can construct a LIFnc expression α2n

such that, given an interpretation D interpreting a binary re-
lation R, Jα2nKD consists of all 2n-cliques of R. Next, we
show how α2n can be used (with composition) to construct
an expression α∃3n such that Jα∃3nKD is non-empty if and
only if R has a 3n-clique. Since this property cannot be ex-
pressed in FO[2n], we can conclude that composition must
be primitive.

To avoid confusion, we recall that a set L of k data ele-
ments is a k-clique in a binary relation r, if any two distinct
a and b in L, we have (a, b) ∈ r (and also (b, a) ∈ r).

Proposition 30. Suppose that |V| = n with n ≥ 2 and let
S = {R} with ar(R) = iar(R) = 2. There exists a LIF
expression α2n such that

Jα2nKD = {(ν1, ν2) |
ν1(V) ∪ ν2(V) is a 2n-clique in D(R)}.

Proof. Throughout this proof, we identify a pair (ν1, ν2) of
two valuations with the 2n tuple of data elements

ν1(x1, . . . , xn) · ν2(x1, . . . , xn).

Before coming to the actual expression for α2n, we intro-
duce some auxiliary concepts. First, we define

all := cyllV cylrV(id).

It is clear that

JallKD = {(ν1, ν2) ∈ V × V}.

A first condition for being a 2n-clique is that all data ele-
ments are different. It is clear that the expression

α= :=
⋃

x 6=y∈V

(
σl
x=y(all) ∪ σr

x=y(all)
)
∪
⋃
x,y∈V

σlr
x=y(all)

has the property that Jα=KD consists of all 2n-tuples where
at least one data element is repeated. Hence

α 6= := all − α=

is such that Jα 6=KD consists of all 2n-tuples of distinct data
elements.

The second condition for being a 2n-clique is that each
two distinct elements are connected byR. For checking this,
for each two variables x and y we define

Rlx,y := cyllV−{x,y}cylrV(R(x, y) ∩R(y, x))

Rrx,y := cyllVcylrV−{x,y}(R(x, y) ∩R(y, x))

Rlrx,y := cyllV−{x}cylrV−{y}(R(x, y) ∩R(y, x)).

With these definitions, for instance JRlrxi,xj
KD consists of

all 2n-tuples such that the ith and the n + jth element are
connected (in two directions) in R, and similar properties
hold for Rl and Rr. From this, it follows that the expression

α2n = α 6= ∩
⋂

x 6=y∈V

(
Rlx,y ∩Rrx,y

)
∩
⋂
x,y∈V

Rlrx,y

satisfies the proposition; it intersects α 6= with all the expres-
sions stating that each two data elements must be (bidirec-
tionally) connected by R.

Notice that α2n can be used to compute all the 2n-cliques
of the input interpretation. We now use α2n to check for
existence of 3n-cliques.

Proposition 31. Suppose that |V| = n with n ≥ 2 and let
S = {R} with ar(R) = iar(R) = 2. Define

α∃3n := (α2n ; α2n) ∩ α2n.

Then, for every interpretation D, Jα∃3nKD is non-empty if
and only if D(R) has a 3n-clique.

It is well known that existence of a 3n-clique is not ex-
pressible in FO[2n] (Ebbinghaus and Flum 1999). The
above proposition thus immediately implies

Theorem 32. Suppose that |V| = n ≥ 2. Then, composi-
tion is primitive in LIF. Specifically, no LIFnc expression is
equivalent to the LIF expression α∃3n.

5 Related Work
LIF grew out of the Algebra of Modular Systems (Ter-
novska 2015), which was developed to provide founda-
tions for programming from available components. That pa-
per mentions information flows, in connection with input–
output behaviour in classical logic, for the first time. The
paper also surveys earlier work from the author’s group, as
well as other closely related work.

In a companion paper (Aamer et al. 2020), we report on an
application of LIF to querying under limited access pat-
terns, as for instance offered by web services (Mcilraith,
Son, and Zeng 2001). That work also involves inputs and
outputs, but only of a syntactic nature, and for a restricted
variant of LIF (called “forward” LIF) only. The property
of io-disjointness turned also to be important in that work,
albeit for a quite different purpose.

Our results also relate to the evaluation problem for
LIF, which takes as input a LIF expression α, an interpreta-
tionD, and a valuation ν1, and where the task is to find all ν2

such that (ν1, ν2) ∈ JαKD. From our results, it follows that
only the value of ν1 on the input variables is important, and

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

9

similarly we are only interested in the values of each ν2 on
the output variables. A subtle point, however, is that D may
be infinite, and moreover, even if D itself is not infinite, the
output of the evaluation problem may still be. In many cases,
it is still possible to obtain a finite representation, for in-
stance by using quantifier elimination techniques as done in
Constraint Databases (Kuper, Libkin, and Paredaens 2000).

We have defined the semantics of LIF algebraically, in the
style of cylindric set algebra (Henkin, Monk, and Tarski
1971; Imielinski and Lipski 1984). An important difference
is the dynamic nature of BRVs which are sets of pairs of
valuations, as opposed to sets of valuations which are the
basic objects in cylindric set algebra.

Our optimality theorem was inspired by work on con-
trolled FO (Fan, Geerts, and Libkin 2014), which had as
aim to infer boundedness properties of the outputs of first-
order queries, given boundedness properties of the input re-
lations. Since this inference task is undecidable, the authors
defined syntactic inferences similar in spirit to our syntactic
definition of inputs and outputs. They show (their Proposi-
tion 4.3) that their definitions are, in a sense, sharp. Note
that our optimality theorem is stronger in that it shows that
no other compositional and sound definition can be better
than ours. Of course, the comparison between the two re-
sults is only superficial as the inference tasks at hand are
very different.

The Logic of Information Flows is similar to dynamic
predicate logic (DPL) (Groenendijk and Stokhof 1991), in
the sense that formulas are also evaluated with respect to
pairs of valuations. There is, however a key difference in
philosophy between the two logics. LIF starts from the idea
that well-known operators from first-order logic can be used
to describe combinations and manipulations of dynamic sys-
tems, and as such provides a means for procedural knowl-
edge in a declarative language. The dynamics in LIF are dy-
namics of the described system. Dynamic predicate logic,
on the other hand starts from the observation that, in natu-
ral language, operators such as conjunction and existential
quantification are dynamic, where the dynamics are in the
process of parsing a sentence, often related to coreference
analysis. To the best of our knowledge, inputs and outputs
of expressions have not been studied in DPL.

Since we developed a large part of our work in the gen-
eral setting of BRVs, and thus of transition systems, we
expect several of our results to be applicable in the context
of other formalisms where specifying inputs and outputs is
important, such as API-based programming (Calvanese et
al. 2016) and synthesis (De Giacomo, Patrizi, and Sardiña
2013; Alechina et al. 2019), privacy and security, business
process modeling (Calvanese et al. 2008), and model com-
binators in Constraint Programming (Fontaine, Michel, and
Van Hentenryck 2013).

6 Conclusion and Future Work
Declarative modeling is of central importance in the area of
Knowledge Representation and Reasoning. The Logic of
Information Flows provides a framework to investigate how,
and to what degree, dynamic or imperative features can be
modeled declaratively. In this paper we have focused on

inputs, outputs, and sequential composition, as these three
concepts are fundamental to modeling dynamic systems.
There are many directions for further research.

Inputs and outputs are not just relevant from a theoretic
perspective, but can also have ramifications on computation.
Indeed, they form a first handle to parallelize computation
of complex LIF expressions, or to decompose problems.

In this paper, we have worked with a basic set of opera-
tions motivated by the classical logic connectives. In order
to provide a fine control of computational complexity, or to
increase expressiveness, it makes sense to consider other op-
erations.

The semantic notions developed in this paper (inputs, out-
puts, soundness) apply to global BRVs in general, and hence
are robust under varying the set of operations. Moreover, our
work delineates and demonstrates a methodology for adapt-
ing syntactic input–output definitions to other operations.

A specific operation that is natural to consider is con-
verse. The converse of a BRV A is defined to be {(ν2, ν1) |
(ν1, ν2) ∈ A}. In the context of LIF (Ternovska 2019) it
can model constraint solving by searching for an input to a
module that produces a desired outcome. When we add con-
verse to LIF with only a single variable (|V| = 1), and the
vocabulary has only binary relations of input arity one, then
we obtain the classical calculus of relations (Tarski 1941).
There, converse is known to be primitive (Fletcher et al.
2015). When the number of variables is strictly more than
half of the maximum arity of relations in the vocabulary,
converse is redundant in LIF, as can be shown using similar
techniques as used in this paper to show redundancy of com-
position. Investigating the exact number of variables needed
for non-primitivity is an interesting question for further re-
search.

Another direction for further research is to examine frag-
ments of LIF for which the semantic input or output problem
may be decidable, or even for which the syntactic definitions
coincide with the semantic definitions.

Finally, an operation that often occurs in dynamic systems
is the fixed point construct used by Ternovska (2019). It
remains to be seen how our work, and the further research
directions mentioned above, can be extended to include the
fixpoint operation.

Acknowledgments
This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificiële Intelli-
gentie (AI) Vlaanderen” programme, from FWO Flanders
project G0D9616N, and from Natural Sciences and Engi-
neering Research Council of Canada (NSERC). Jan Van den
Bussche is partially supported by the National Natural Sci-
ence Foundation of China (61972455).

References
Aamer, H.; Bogaerts, B.; Surinx, D.; Ternovska, E.; and
Van den Bussche, J. 2020. Executable first-order queries
in the logic of information flows. In Proceedings 23rd In-
ternational Conference on Database Theory, volume 155 of

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

10

Leibniz International Proceedings in Informatics, 4:1–4:14.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
Alechina, N.; Brázdil, T.; De Giacomo, G.; Felli, P.; Logan,
B.; and Vardi, M. Y. 2019. Unbounded orchestrations of
transducers for manufacturing. In AAAI, 2646–2653. AAAI
Press.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; Mecella,
M.; and Patrizi, F. 2008. Automatic service composition
and synthesis: the roman model. IEEE Data Eng. Bull.
31(3):18–22.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2016. Regular open APIs. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the
Fifteenth International Conference, KR 2016, Cape Town,
South Africa, April 25-29, 2016., 329–338.
De Giacomo, G.; Patrizi, F.; and Sardiña, S. 2013.
Automatic behavior composition synthesis. Artif. Intell.
196:106–142.
Ebbinghaus, H.-D., and Flum, J. 1999. Finite Model Theory.
Springer, second edition.
Enderton, H. B. 1972. A Mathematical Introduction To
Logic. Academic Press.
Fan, W.; Geerts, F.; and Libkin, L. 2014. On scale inde-
pendence for querying big data. In Proceedings 33th ACM
Symposium on Principles of Database Systems, 51–62.
Fletcher, G.; Gyssens, M.; Leinders, D.; Surinx, D.; Van den
Bussche, J.; Van Gucht, D.; Vansummeren, S.; and Wu, Y.
2015. Relative expressive power of navigational querying
on graphs. Information Sciences 298:390–406.
Fontaine, D.; Michel, L.; and Van Hentenryck, P. 2013.
Model combinators for hybrid optimization. In Principles
and Practice of Constraint Programming - 19th Interna-
tional Conference, CP 2013, Uppsala, Sweden, September
16-20, 2013. Proceedings, 299–314.
Groenendijk, J., and Stokhof, M. 1991. Dynamic predicate
logic. Linguistics and Philosophy 14:39–100.
Gurevich, Y. 1983. Algebras of feasible functions. In Pro-
ceedings 24th Symposium on Foundations of Computer Sci-
ence, 210–214. IEEE Computer Society.
Gurevich, Y. 1988. Logic and the challenge of computer
science. In Börger, E., ed., Current Trends in Theoretical
Computer Science. Computer Science Press. 1–57.
Henkin, L.; Monk, J.; and Tarski, A. 1971. Cylindric Alge-
bras. Part I. North-Holland.
Imielinski, T., and Lipski, W. 1984. The relational model
of data and cylindric algebras. Journal of Computer and
System Sciences 28:80–102.
Kuper, G.; Libkin, L.; and Paredaens, J., eds. 2000. Con-
straint Databases. Springer.
Lewis, D. 1973. Causation. Journal of Philosophy 70:113–
126.
Lifschitz, V. 1987. Formal theories of action (preliminary
report). In McDermott, J. P., ed., Proceedings of the 10th
International Joint Conference on Artificial Intelligence. Mi-
lan, Italy, August 23-28, 1987, 966–972. Morgan Kaufmann.

McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502.
Mcilraith, S.; Son, T.; and Zeng, H. 2001. Semantic web
services. Intelligent Systems, IEEE 16:46 – 53.
Mitchell, D. G., and Ternovska, E. 2005. A framework
for representing and solving NP search problems. In Proc.
AAAI, 430–435.
Tarski, A. 1941. On the calculus of relations. Journal of
Symbolic Logic 6:73–89.
Ternovska, E. 2015. An algebra of combined constraint
solving. In Global Conference on Artificial Intelligence,
GCAI 2015, Tbilisi, Georgia, October 16-19, 2015, 275–
295.
Ternovska, E. 2017. Recent progress on the algebra of
modular systems. In Reutter, J., and Srivastava, D., eds.,
Proceedings 11th Alberto Mendelzon International Work-
shop on Foundations of Data Management, volume 1912 of
CEUR Workshop Proceedings.
Ternovska, E. 2019. An algebra of modular systems: static
and dynamic perspectives. In Herzig, A., and Popescu, A.,
eds., Frontiers of Combining Systems: Proceedings 12th
FroCos, volume 11715 of Lecture Notes in Artificial Intel-
ligence, 94–111. Springer.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

11

	Introduction
	Preliminaries
	Inputs and Outputs
	Semantic Inputs and Outputs
	Syntactic Inputs and Outputs

	Primitivity of Composition
	When Input and Output are Disjoint, Composition is Non-Primitive
	If V is Infinite, Composition is Non-Primitive
	If V is Finite, Composition is Primitive

	Related Work
	Conclusion and Future Work

